Evaluating the implications of urban growth on carbon fixation ecosystem services (Case study: Karaj Subcatchments)
Subject Areas : Spatial data infrastructures and standardisationSareh Alsadat Sajjadi Ghaemmaghami 1 , Romina Sayahnia 2 , Naghmeh Mobarghei Dinan 3 , Majid Makhdoum Farkhondeh 4
1 - MSc. Environmental Planning, Environmental Sciences Research Institute (ESRI), Shahid Beheshti University, Tehran, Iran
2 - Assistant Professor, Department of Environmental Planning, Environmental Sciences Research Institute (ESRI), Shahid Beheshti University, Tehran, Iran
3 - Associate Professor, Department of Environmental Planning, Environmental Sciences Research Institute (ESRI), Shahid Beheshti University, Tehran, Iran
4 - Professor, Department of Environmental Engineering, Faculty of Natural Resources, Tehran University, Tehran, Iran
Keywords: Ecosystem Services, land use, Karaj, remote sensing, Terrset, Urban growth,
Abstract :
Background and Objective In recent decades, natural ecosystems have undergone fundamental changes due to increasing population growth and increasing demand in order to provide the necessary facilities for human welfare. Since these changes are generally associated with environmental degradation, one should always be concerned about the damage to the ecosystem that supports human life. Therefore, the maintenance and protection of ecosystems are critical to achieving balance, equilibrium and coordination between human society and the ecosystem and their functional services. Ecosystem services have the potential to be considered as a key tool for policy-making and decision-making at the global, national, regional and local levels. Using ecosystem services, several applications including sustainable management of natural resources, land use optimization, environmental protection, nature conservation and restoration, landscaping, basic nature solutions, water conservation and weather, disaster risk reduction, environmental education and environmental research can be pursued. However, the relationship between ecosystem processes and functions and human well-being is complex and a multifaceted and preventive approach must be taken to evaluate these relationships and value the benefits. The purpose of this study was to investigate the trend of changes in ecosystem services in urban growth and development, evaluation of ecosystem services and the consequences of urban growth on carbon storage ecosystem service in the study area of Karaj catchment area in the period (before and after the development of irrationality). Materials and Methods Ecosystem services mapping is an effective tool to improve land planning and land use. Valuation of these services can be an effective factor and a promising way to explain the relationship between services, society and the economy and can play an effective role in the cost-benefit system of policies to rehabilitate and manage the environment. In this study, carbon storage service was investigated in three catchments of Alborz, Karaj, Hashtgerd and Eshtehard provinces. Since the study area covers almost two-thirds of the province, so in the study of the characteristics of the study area, the same characteristics of the Alborz province have been mentioned. In line with this research, In the first step, land use maps of the study area using trust software and GIS and Landsat satellite imagery (Landsat 5TM sensor images 1988, Landsat 8 satellite ETM+ sensor 2018), and the Supervised classification have been applied for the two periods of 1988 and 2018 in four classes of vegetation, man-made space, the aquatic environment and non-man-made space. After preparing the land use map, the accuracy of the maps was checked using Google Earth software and field visits. Then, using the land use map, the carbon storage ecosystem service map was extracted using Invest software and finally evaluated using soil carbon, ground carbon, basement and dead tissue information. Results and Discussion The results showed that the most changes in land use maps belong to non-constructed space and man-made space, which shows a decrease of 16% and an increase of 11%, respectively. Regarding carbon storage service, according to the plans obtained in two years, in the central part of the region, which has witnessed the growth of agricultural lands, the amount of carbon storage has also increased. The maximum carbon reserve, with a share of 78377470 tons per hectare in 1988 and 72618450 tons per hectare in 2018, belongs to the Tehran-Karaj basin, and the lowest with a share of 36078497 tons per hectare in 1988 and 34606913 tons per hectare per year. 2018, belongs to Eshtehard. In total, the value has increased from about 14163 billion rials per ton per hectare since 1988 to about 13163 billion rials in 2018, which has gone in a negative direction. Although the amount of carbon storage varied and changed in different places, the maximum amount of carbon storage remained unchanged during this period; because there is still unbuilt space. Conclusion In general, it can be stated that the use of ecosystem services valuation does not necessarily mean a reduction in the value of services in the development process, but it means that using this approach can be used to improve development planning to maintain and used to improve the quality of the ecosystem. In fact, it can be said that this approach can be used as an interface to link the anthropological and ecological sections under a single programmatic and managerial framework. and in order to; used instead of "to", especially after try, come, go More (Definitions, Synonyms, Translation).http://dorl.net/dor/20.1001.1.26767082.1400.12.1.2.3
Arkhi S, Isfahani M. 2015. A visual Learning to IDRISI Selva. Golestan University, 336 p. (In Persian).
Asadolahi Z, Salmanmahiny A, Mirkarimi H. 2015. Modeling the Supply of Sediment Retention Ecosystem Service (Case study: Eastern Part of Gorgan-Rud Watershed). Quarterly Journal of Environmental Erosion Research, 5(3): 61-75. (In Persian).
Burkhard B, Maes J. 2017. Mapping ecosystem services. Advanced books, 1: e12837.
Chan KMA, Terre S, Joshua G. 2012. Rethinking ecosystem services to better address and navigate cultural values. Ecological Economics, 74: 8-18. doi:https://doi.org/10.1016/j.ecolecon.2011.11.011.
Costanza R, d'Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'neill RV, Paruelo J. 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6630): 253-260.
Costanza R, d'Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J. 1998. The value of ecosystem services: putting the issues in perspective. Ecological Economics, 25(1): 67-72.
Costanza R, Rudolf, Leon B, Ida K, Lorenzo F, Paul S, Steve F, Monica G. 2017. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28: 1-16. doi:https://doi.org/10.1016/j.ecoser.2017.09.008.
De Groot RS, Matthew AW, Roelof MJB. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3): 393-408. doi:https://doi.org/10.1016/S0921-8009(02)00089-7.
Egoh B, Drakou EG, Dunbar MB, Maes J, Willemen L. 2012. Indicators for mapping ecosystem services: a review. European Commission, Joint Research Centre (JRC). http://dx.doi.org/10.2788/41823.
Fatemi TS, Madnipour KM, Hashemi S. 2015. Estimating changes in forest cover in the Rudsar county by using neural network and maximum likelihood methods. Journal of RS and GIS for Natural Resources 6(2): 33-43. (In Persian).
Häyhä T, Pier Paolo F, Alessandro P, Brian DF. 2015. Assessing, valuing, and mapping ecosystem services in Alpine forests. Ecosystem Services, 14: 12-23. doi:https://doi.org/10.1016/j.ecoser.2015.03.001.
Heal GM BE, Boyle KJ, Covich AP, Gloss SP, Hershner Carlton H, Hoehn John P, Pringle Catherine M, Polasky S, Segerson K, Shrader-Frechette K. 2005. experts.umn.edu, http://www.nap.edu/books/030909318X/html.
Helmy A, El-Taweel GS. 2010. Neural network change detection model for satellite images using textural and spectral characteristics. American Journal of Engineering and Applied Sciences, 3(4). doi:https://doi.org/10.3844/ajeassp.2010.604.610.
Hosseini Nejad S, Taheri G. 2015. Investigating the environmental situation in energy consuming sectors. Statistic Journal, 2(5): 16-20. (In Persian).
Hosseini S, Amirnejad H, Oladi J. 2017. The Valuation of Functions and Services of Forest Ecosystem of Kiasar National Park. Agricultural Economics, 11(1): 211-239. (In Persian).
Kazemi M, Mahdavi Y, Nohegar A, Rezaie P. 2011. Estimate land use and land cover change using RS and GIS techniques (Case Study: Tangeh-Bostanak watershed, Shiraz). Journal of RS and GIS for Natural Resources (Journal of Applied RS and GIS Techniques in Natural Resource Science), 2(1): 101-110. (In Persian).
Mobarghai DN. 2009. Modeling and application of the spatial valuation pattern of forest ecosystem services using Geographical Information System (Case study: Kheiroudkenar forest- Noushar). Ph.D thesis, Department of Environment Planning, University of Tehran, 287 p. (In Persian).
Mohammadi S, Habashi K, Pormanafi S. 2018. Monitoring and prediction land use/land cover changes and its relation to drought (Case study: sub-basin Parsel B2, Zayandeh Rood watershed). Journal of RS and GIS for Natural Resources, 9(1): 24-39. (In Persian). .
Natasha N, Alessandro P, Fabio P, Madeleine G, Pier Paolo F. 2018. Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden). Ecological Modelling, 368: 411-424. doi:https://doi.org/10.1016/j.ecolmodel.2017.10.013.
Pauchard K, Núñez M, León C, Pliscoff P, Squeo F, Armesto JJ. 2017. A framework for the classification Chilean terrestrial ecosystems as a tool for achieving global conservation targets. Biological Conservation, 26: 2857–2876. doi:https://doi.org/10.1007/s10531-017-1393-x.
Peng J, Lu T, Yanxu L, Mingyue Z, Yi'na H, Jiansheng W. 2017. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Science of The Total Environment, 607-608: 706-714. doi:https://doi.org/10.1016/j.scitotenv.2017.06.218.
Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA. 2005. Ecosystem service supply and vulnerability to global change in Europe. science, 310(5752): 1333-1337. doi:https://doi.org/10.1126/science.1115233.
Sukhdev P, Wittmer H, Schröter-Schlaack C, Nesshöver C, Bishop J, Brink Pt, Gundimeda H, Kumar P, Simmons B. 2010. The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB. vol 333.95 E19. UNEP, Ginebra (Suiza).
TEEB. 2010. Mainstreaming the Economics of Nature. A Synthesis of the Approach, Conclusions and Recommendations of TEEB. Earthscan, London and Washington, 280 p.
Timothy GW, James DW, Nicola Z, Kurt HR. 2009. A multi-scale method of mapping urban influence. Environmental Modelling & Software, 24(10): 1252-1256. doi:https://doi.org/10.1016/j.envsoft.2009.03.006.
Wu J. 2014. Urban ecology and sustainability: The state-of-the-science and future directions. Landscape and Urban Planning, 125: 209-221. doi:https://doi.org/10.1016/j.landurbplan.2014.01.018.
Zhang D, Qingxu H, Chunyang H, Jianguo W. 2017. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resources, Conservation and Recycling, 125: 115-130. doi:https://doi.org/10.1016/j.resconrec.2017.06.003.
_||_Arkhi S, Isfahani M. 2015. A visual Learning to IDRISI Selva. Golestan University, 336 p. (In Persian).
Asadolahi Z, Salmanmahiny A, Mirkarimi H. 2015. Modeling the Supply of Sediment Retention Ecosystem Service (Case study: Eastern Part of Gorgan-Rud Watershed). Quarterly Journal of Environmental Erosion Research, 5(3): 61-75. (In Persian).
Burkhard B, Maes J. 2017. Mapping ecosystem services. Advanced books, 1: e12837.
Chan KMA, Terre S, Joshua G. 2012. Rethinking ecosystem services to better address and navigate cultural values. Ecological Economics, 74: 8-18. doi:https://doi.org/10.1016/j.ecolecon.2011.11.011.
Costanza R, d'Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'neill RV, Paruelo J. 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6630): 253-260.
Costanza R, d'Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J. 1998. The value of ecosystem services: putting the issues in perspective. Ecological Economics, 25(1): 67-72.
Costanza R, Rudolf, Leon B, Ida K, Lorenzo F, Paul S, Steve F, Monica G. 2017. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28: 1-16. doi:https://doi.org/10.1016/j.ecoser.2017.09.008.
De Groot RS, Matthew AW, Roelof MJB. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3): 393-408. doi:https://doi.org/10.1016/S0921-8009(02)00089-7.
Egoh B, Drakou EG, Dunbar MB, Maes J, Willemen L. 2012. Indicators for mapping ecosystem services: a review. European Commission, Joint Research Centre (JRC). http://dx.doi.org/10.2788/41823.
Fatemi TS, Madnipour KM, Hashemi S. 2015. Estimating changes in forest cover in the Rudsar county by using neural network and maximum likelihood methods. Journal of RS and GIS for Natural Resources 6(2): 33-43. (In Persian).
Häyhä T, Pier Paolo F, Alessandro P, Brian DF. 2015. Assessing, valuing, and mapping ecosystem services in Alpine forests. Ecosystem Services, 14: 12-23. doi:https://doi.org/10.1016/j.ecoser.2015.03.001.
Heal GM BE, Boyle KJ, Covich AP, Gloss SP, Hershner Carlton H, Hoehn John P, Pringle Catherine M, Polasky S, Segerson K, Shrader-Frechette K. 2005. experts.umn.edu, http://www.nap.edu/books/030909318X/html.
Helmy A, El-Taweel GS. 2010. Neural network change detection model for satellite images using textural and spectral characteristics. American Journal of Engineering and Applied Sciences, 3(4). doi:https://doi.org/10.3844/ajeassp.2010.604.610.
Hosseini Nejad S, Taheri G. 2015. Investigating the environmental situation in energy consuming sectors. Statistic Journal, 2(5): 16-20. (In Persian).
Hosseini S, Amirnejad H, Oladi J. 2017. The Valuation of Functions and Services of Forest Ecosystem of Kiasar National Park. Agricultural Economics, 11(1): 211-239. (In Persian).
Kazemi M, Mahdavi Y, Nohegar A, Rezaie P. 2011. Estimate land use and land cover change using RS and GIS techniques (Case Study: Tangeh-Bostanak watershed, Shiraz). Journal of RS and GIS for Natural Resources (Journal of Applied RS and GIS Techniques in Natural Resource Science), 2(1): 101-110. (In Persian).
Mobarghai DN. 2009. Modeling and application of the spatial valuation pattern of forest ecosystem services using Geographical Information System (Case study: Kheiroudkenar forest- Noushar). Ph.D thesis, Department of Environment Planning, University of Tehran, 287 p. (In Persian).
Mohammadi S, Habashi K, Pormanafi S. 2018. Monitoring and prediction land use/land cover changes and its relation to drought (Case study: sub-basin Parsel B2, Zayandeh Rood watershed). Journal of RS and GIS for Natural Resources, 9(1): 24-39. (In Persian). .
Natasha N, Alessandro P, Fabio P, Madeleine G, Pier Paolo F. 2018. Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden). Ecological Modelling, 368: 411-424. doi:https://doi.org/10.1016/j.ecolmodel.2017.10.013.
Pauchard K, Núñez M, León C, Pliscoff P, Squeo F, Armesto JJ. 2017. A framework for the classification Chilean terrestrial ecosystems as a tool for achieving global conservation targets. Biological Conservation, 26: 2857–2876. doi:https://doi.org/10.1007/s10531-017-1393-x.
Peng J, Lu T, Yanxu L, Mingyue Z, Yi'na H, Jiansheng W. 2017. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Science of The Total Environment, 607-608: 706-714. doi:https://doi.org/10.1016/j.scitotenv.2017.06.218.
Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA. 2005. Ecosystem service supply and vulnerability to global change in Europe. science, 310(5752): 1333-1337. doi:https://doi.org/10.1126/science.1115233.
Sukhdev P, Wittmer H, Schröter-Schlaack C, Nesshöver C, Bishop J, Brink Pt, Gundimeda H, Kumar P, Simmons B. 2010. The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB. vol 333.95 E19. UNEP, Ginebra (Suiza).
TEEB. 2010. Mainstreaming the Economics of Nature. A Synthesis of the Approach, Conclusions and Recommendations of TEEB. Earthscan, London and Washington, 280 p.
Timothy GW, James DW, Nicola Z, Kurt HR. 2009. A multi-scale method of mapping urban influence. Environmental Modelling & Software, 24(10): 1252-1256. doi:https://doi.org/10.1016/j.envsoft.2009.03.006.
Wu J. 2014. Urban ecology and sustainability: The state-of-the-science and future directions. Landscape and Urban Planning, 125: 209-221. doi:https://doi.org/10.1016/j.landurbplan.2014.01.018.
Zhang D, Qingxu H, Chunyang H, Jianguo W. 2017. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resources, Conservation and Recycling, 125: 115-130. doi:https://doi.org/10.1016/j.resconrec.2017.06.003.