Identification of potential areas for presence of submarine springs in the persian gulf on the coasts of Bushehr province using thermal data of Landsat 8
Subject Areas : Geospatial systems developmentMohsen Farzin 1 , Ali Akbar Nazari Samani 2 , Saeideh Menbari 3 , Sadat Feiznia 4 , Gholam Abbas Kazemi 5
1 - Assis. Prof. College of Agriculture and Natural Resources, Yasouj University
2 - Assoc. Prof. College of Natural Resources, University of Tehran
3 - MSc. Graduated of Environment and Natural Resources, International Desert Research Center, University of Tehran
4 - Prof. College of Natural Resources, University of Tehran
5 - Assis. Prof. College of Geology Sciences, Shahrood University of Technology
Keywords: Satellite thermal data, Persian Gulf, Submarine freshwater springs, Bushehr, Sea surface Temperature (SST),
Abstract :
In order to determine potential areas of submarine springs on the coast of Bushehr province, Sea Surface Semperature (SST) around Bahrain and the coasts of Bushehr province, according, to atmospheric correction coefficients and the relations for thermal band 10 of Landsat 8 in four months 2016 was mapped using ArGIS and ENVI software. After extracting the estimate temperature submarine springs of Bahrain, six springs was determined as a control. The temperature of the springs was estimated 16.54, 18.52, 17.29, 15.97, 17.73, and 15.83°C in the image of February. Matching coastlines estimated temperature of Bushehr province with the mean control temperature (16.98°C), several regions were identified as potential areas of submarine springs, including Asaloyeh-Nayband bay, a large part of the coastline between Bandar Dayer to Mond river, around the village of Kalat, east-west of Bushehr, between Shif island and Heleh river, Bandar Rig, around Bandar Ganaveh, and between Hendijan and Bandar Deylam. Thermal anomalies with less 100 meter diameter to water bodies probably are less important than wider anomalies; therefore using the images with moderate resolution, such as Landsat 8, may be more important than high resolution images for detecting the broad and significant anomalies, especially in terms of time and cost. The images may use as a preliminary screening test for the early identification of potential areas of the submarine springs.
1. عسگرزاده، پ.، ع. درویشی بلورانی، ح. بهرامی و س. حمزه. 1395. مقایسة برآورد دمای سطح زمین در روشهای تکباندی و چندباندی با استفاده از تصـویر لندست 8. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(3): 18-29.
2. میرزاییزاده، و.، م. نیکنژاد و ج. اولادی قادیکلایی. 1394. ارزیابی الگوریتمهای طبقه بندی نظارت شده غیرپارامتریک در تهیة نقشـه پوشـش زمـین بـا استفاده از تصاویر لندست 8. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 6(3): 29-44.
3. ویسی، ش.، ع. ع. ناصری، س. حمزه و پ. مرادی. 1395. برآورد دمای مزارع نیشکر با اسـتفاده از الگـوریتم پنجـره مجـزا و تصـاویر سـنجنده OLI ماهواره لندست 8. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7(1): 27-40.
4. Akawwi E. 2006. Locating zones and quantify the submarine groundwater discharge into the eastern shores of the Dead Sea-Jordan. Dissertation zurErlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen Fakultäten der Georg-August-Universitätzu Göttingen. 188 pp.
5. Al Bassam AA, Tiro EHM. 2011. Using remote sensing and GIS for submarine freshwater springs exploration as a plausible water source in Saudi Arabia. Sixth National GIS Symposium in Saudi Arabia, Le Meridian, Al-Khobar – Eastern Province, April 24-26.
6. Anderson MP. 2005. Heat as a ground water tracer. Groundwater, 43(6): 951-968.
7. Artis DA, Carnahan WH. 1982. Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12(4): 313-329.
8. Banks WS, Paylor RL, Hughes WB. 1996. Using thermal‐infrared imagery to delineate ground‐water discharge. Groundwater, 34(3): 434-443.
9. Barsi JA, Schott JR, Hook SJ, Raqueno NG, Markham BL, Radocinski RG. 2014. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11): 11607-11626.
10. Bonem RM. 1988. Effects of submarine karst development ref succession. Proceeding of the 6th International Coral Reef Symposium, Australia, 3: 419-423.
11. Chapman RE. 1981. Geology and water: An introduction to fluid mechanics for geologists. Springer Netherlands, 228 pp.
12. Duarte T, Hemond HF, Frankel D, Frankel S. 2006. Assessment of submarine groundwater discharge by handheld aerial infrared imagery: Case study of Kaloko fishpond and bay, Hawai'i. Limnology and Oceanography: Methods, 4(7): 227-236.
13. Farhoudi G, Poll K. 1992. A morphotectonic study of environmental impact on ground water in Southern Iran and under the Persian Gulf. Geologische Rundschau, 81(2): 581-587.
14. Ford D, Williams P. 2007. Karst Hydrogeology and Geomorphology. John Wiley & Sons, 562 pp.
15. Fromant AC. 1965. The water supplies of Bahrain. Journal of the Institute of Water Engineers, 19: 579-585.
16. Hennig H, Mallast U, Merz R. 2015. Multi-temporal thermal analyses for submarine groundwater discharge (SGD) detection over large spatial scales in the Mediterranean. In: EGU General Assembly Conference, Vienna, Austria, April 12-17.
17. Judd A, Hovland M. 2007. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment. Cambridge University press, 475 pp.
18. Kolokoussis P, Karathanassi V, Rokos D, Argialas D, Karageorgis AP, Georgopoulos D. 2011. Integrating thermal and hyperspectral remote sensing for the detection of coastal springs and submarine groundwater discharges. International Journal of Remote Sensing, 32(23): 8231-8251.
19. Kottmeier C, Agnon A, Al-Halbouni D, Alpert P, Corsmeier U, Dahm T, Eshel A, Geyer S, Haas M, Holohan E. 2016. New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project. Science of the Total Environment, 544: 1045-1058.
20. Koudmani M. 2008. Applications of remote sensing to water resources management in Syria. The 3rd International Conference on Water Resources and Arid Environments and the 1st Arab Water Forum, Saudi Arbia, November 16-19.
21. Lewandowski J, Meinikmann K, Ruhtz T, Pöschke F, Kirillin G. 2013. Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation. Remote Sensing of Environment, 138: 119-125.
22. Mejías M, Ballesteros BJ, Antón-Pacheco C, Domínguez JA, Garcia-Orellana J, Garcia-Solsona E, Masqué P. 2012. Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea. Journal of Hydrology, 464: 27-40.
23. Montanaro M, Gerace A, Lunsford A, Reuter D. 2014. Stray light artifacts in imagery from the Landsat 8 Thermal Infrared Sensor. Remote Sensing, 6(11): 10435-10456.
24. Moore WS. 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2: 59-88.
25. Reynolds RM. 1993. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin, 27: 35-59.
26. Rokos E, Markantonis K, Koumantakis I. 2009. Submarine water discharge detection, nearby urban areas in Greece, using Aster and Landsat images. 6th International Conference on Land and Water Degradation Processes and Management, Magdeburg, Germany, September 6-9.
27. ROPME (the Regional Organization for the Protection of the Marine Environment). 2000. Regional Report of the State of the Marin Environment, Kuwait, 26 pp.
28. Schuetz T, Weiler M. 2011. Quantification of localized groundwater inflow into streams using ground‐based infrared thermography. Geophysical Research Letters, 38(3): 1-5.
29. Shaban A, Khawlie M, Abdallah C, Faour G. 2005. Geologic controls of submarine groundwater discharge: application of remote sensing to north Lebanon. Environmental Geology, 47(4): 512-522.
30. Srivastava P, Majumdar T, Bhattacharya AK. 2009. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Advances in Space Research, 43(10): 1563-1574.
31. Stefouli M, Tsompos P. 2004. Identification and monitoring of fresh water outflows in coastal areas: pilot study on Psahna area/Evia island Greece. Bulletin of the Geological Society of Greece, 36(2): 928-937.
32. Taniguchi M, Burnett WC, Smith CF, Paulsen RJ, O'rourke D, Krupa SL, Christoff JL. 2003. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico. Biogeochemistry, 66(1): 35-53.
33. Tcherepanov E, Zlotnik V, Henebry G. 2005. Using Landsat thermal imagery and GIS for identification of groundwater discharge into shallow groundwater‐dominated lakes. International Journal of Remote Sensing, 26(17): 3649-3661.
34. Williams MO. 1946. Bahrain: port of pearls and petroleum. National Geographic, 89: 194-210.
35. Wilson J, Rocha C. 2012. Regional scale assessment of Submarine Groundwater Discharge in Ireland combining medium resolution satellite imagery and geochemical tracing techniques. Remote Sensing of Environment, 119: 21-34.
36. Wilson J, Rocha C. 2016. A combined remote sensing and multi-tracer approach for localising and assessing groundwater-lake interactions. International Journal of Applied Earth Observation and Geoinformation, 44: 195-204.
37. Xing Q, Braga F, Tosi L, Lou M, Zaggia L, Teatini P, Gao X, Yu L, Wen X, Shi P. 2016. Detection of Low Salinity Groundwater Seeping into the Eastern Laizhou Bay (China) with the Aid of Landsat Thermal Data. Journal of Coastal Research, 74(sp1): 149-156.
38. Yu X, Guo X, Wu Z. 2014. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6(10): 9829-9852.
_||_