Designing Ultra-low-power Cardiac Pacemaker with Quantum Cellular Automation Technology
Subject Areas : Majlesi Journal of Telecommunication DevicesMojdeh Mahdavi 1 , Mohammad Amin Amiri 2
1 - Department of Electronics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
2 - Malek Ashtar University of Technology
Keywords:
Abstract :
[1] Lombardi, F., ET AL., “Design and test of digital circuits by Quantum Dot Cellular Automata,” Northeastern University, Boston, MA, 2007.
[2] Rezaei, A., “Design and test of new robust QCA Sequential circuits,” Int. J. Nanosci. Nanotechnol, vol. 4, pp. 297–306, Apr. 2018.
[3] Al-Shafi, A., ET AL., “Power analysis dataset for QCA based multiplexer circuits,” Int. J. Nanoele. Elsevier, vol. 1, pp. 593–596, 2017.
[4] Haddad, A.P, Wouter, A., “Ultra Low-Power Biomedical Signal Processing,” Int. J. Springer, ACSP, vol. 2, pp. 290–310, 2009.
[5] Nathan, A., ET AL., “A model driven approach for cardiac pacemaker design using a PRET processor,” Int. Symp. On Real-Time Distributed Computing, pp. 168–175, 2017.
[6] Dwivdi, O., ET AL., “Design and Implementation of programmable Cardiac Pacemaker Using VHDL,” Int. J. Eng. Research and Applications, vol. 5, pp. 155–158, 2015.
[7] https://www.bostonscientific.com/en-US/patients
[8] Berarzadeh, M., ET AL., “A novel low power Exclusive-OR via cell level-based design function in quantum cellular automata,” Int. J. Comput Electron., vol. 5, pp. 875–882, 2017.
[9] Haddad, A.P, ET AL., “The history of cardiac pacemakers: an electronics perspective,” Int. J. IEEE Eng. in Medicine and Biology, vol. 1, pp. 38–48, 2006.
[10] Biswal, B., “ECG signal analysis using modified S-transform” Int. J. Healthcare Technology Letters, vol. 2, pp. 68–72, 2016.
[11] Xie, Sh., ET AL., “Non-invasive reconstruction of dynamic myocardial trans membrane potential with graph-based total variation constraints,” Int. J. Healthcare Technology Letters, vol. 6, pp. 181–186, 2019.
[12] Roopa, T., ET AL, “Implementation of a Pacemaker for Biomedical Application” Int. J. Science and Research, vol. 6, pp. 2780–2785, 2014.
[13] Zhiran, Y., ET AL. “A Battery- and Leadless Heart-Worn Pacemaker Strategy” Int. J. Adv. Funct. Mater. , 2020 (doi: 10.1002/adfm.202000477)
[14] Wong, L., ET AL., “A Very Low-Power CMOS Mixed-Signal IC for Implantable Pacemaker Applications, ” IEEE JOURNAL OF SOLID-STATE CIRCUITS., vol. 12, pp. 2446–2456, 2004.
[15] Eisa, S., ET AL. “Design and Analysis of a Low Power UWB Pulse Generators,” Int. J. Computer and Electrical Engineering, vol. 3, pp. 244–247, 2014.
[16] Chabi, A., ET AL. “Towards ultra-efficient QCA reversible circuits” Int. J. Microprocessors and Microsystems. vol. 1, pp. 127–138, 2017.
[17] Gassoumi, I., ET AL. “An Ultra-Low Power Parity Generator Circuit Based on QCA Technology” Int. J. Electrical and Computer Engineering. 2019 (doi.org/10.1155/2019/1675169)
[18] Martinez, G.A., “External Pacemaker of Diagnose and Research, Experience in Military Hospital Center Mexico” Congress on Engineering and Computer Science, 2007.
[19] https://link.springer.com/Tutorial on QCADesigner 2.0.3.