An Approximate Solution for the Scattering of High-Frequency Plane Electromagnetic Waves from a Perfectly Conducting Strip
Subject Areas : Majlesi Journal of Telecommunication DevicesTurgut İKİZ 1 , Emine AVŞAR AYDIN 2
1 - Çukurova University
2 - Adana Science and Technology University
Keywords:
Abstract :
[1] T. İkiz, S. Koshikawa and K. Kobayashi, E. İ. Veliev and A. H. Serbest,”Solution of the plane wave diffraction problem by an impedance strip using a numerical-analytical method: E-polarized case”, Journal of Electromagnetic Waves and Applications, Vol. 15, No. 3, pp. 291-436, 2001.
[2] Bowman, J. J., “High-frequency backscattering from an absorbing infinite strip with arbitrary face impedance,” Canadian Journal of Phys., Vol. 45, 2409-2430, 1967.
[3] Butler, C. M., “General solution of the narrow strip integral equations,” IEEE Trans. On Ant. And Proc., Vol. AP-33, No. 10, 1085-1090, 1985.
[4] Büyükaksoy, A. A. H. Serbest, and G. Uzgören, “Secondary diffraction of plane waves by an impedance strip,” Radio Science, Vol. 24, 455-464, 1989.
[5] Grinberg, G. A., “Diffraction of electromagnetic waves by strip of finite width,” Soviet Phys. Dokland, Vol. 4, No. 6, 1222-1225, 1960.
[6] Herman, M. I. and J. L. Volakis, “High frequency scattering by a resistive strip and extensions to conductive and impedance strips,” Radio Science, Vol. 22, No. 3, 335-349, 1987.
[7] Senior, T. B. A., “Backscattering from resistive strips,” IEEE Trans. on Ant. and Proc., Vol. AP-27, No. 6, 808-813, 1979.
[8] Serbest, A. H. and A. Büyükaksoy, “Some approximate methods related to the diffraction by strips and slits,” M. Hashimoto, M. İdemen, and O. A. Tretyakov, “Analytical and numerical methods in electromagnetic wave theory,” Science House, 229-256, Japan, 1993.
[9] Tiberio, R. and R. G. Kouyoumjian, “A uniform GTD solution for the diffraction by strips illuminated at grazing incidence,”Radio Science, Vol. 14, No. 6, 933-941, 1979.
[10] Volakis, J. L. and S. S. Bindiganavale, “Scattering by a narrow groove in an impedance plane,” Radio Science, Vol. 31, No. 2, 401-408, 1996.
[11] Burnside, W. D., C. L. Yu, and R. J. Marhefka, “A technique to combine the geometrical theory of diffraction and the moment method,” IEEE Trans. on Ant. and Proc., Vol. AP-23, 551-558, 1975.
[12] Sahalos, J. N. and G. A. Thiele, “On the application of the GTD-MM technique and its limitations,” IEEE Trans. on Ant. and Proc., Vol. AP-29, 780-786, 1981.
[13] Thiele, G. A. and T. H. Newhouse, “A hybrid technique for combining moment method with the geometrical theory of diffraction,” IEEE Trans. on Ant. and Proc., Vol. AP-23, 62-69, Jan. 1975.
[14] Medgyesi, L. N. and D. S. Wang, “Hybrid methods for analysis of complex scatterers,” Proc. of the IEEE, Vol. 77, No. 5, 770-779, 1989.
[15] Veliev, E. I., V. V. Veremey, and V. P. Shestopalov, “Electromagnetic wave diffraction on polygonal cylinders-new approach,” Proc. of 1989 URSI Int. Symp. On Electromagnetic Theory, 628, 1989.
[16] C. Su and T. K. Sarkar, “Scattering from perfectly conducting strips by utilizing an adaptive multiscale moment method,” Progress in Electromagnetics Research, PIER, Vol. 19, 173-197, 1998.