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ABSTRACT: 
An analytical method has been developed for the scattering of high-frequency plane electromagnetic waves from a perfectly 

conducting strip. The solution is much simpler compared to the other methods and gives quite accurate results for ka>>1. Using 

Green’s Theorem, the scattering field has been expressed by an integral of the current induced on the strip. With the integral 

expression of Hankel function, a Fourier transform of the induced current and thus, an integral equation in spectral domain has been 

derived. Using some required transformation on the induced surface current, the obtained spectral equation has been reduced to its 

simplest form and then an approximate solution could be derived for the reduced spectral equation for ka>>1. Using this 

approximate solution the field related quantities such as radiation pattern and radar cross section can be obtained easily; but the 

induced current and current related quantities requires the numerical solution of the algebraic set of equations obtained by 

expressing the current in the form of an infinite series which satisfies the boundary conditions on the surface of the conducting 

strip. 
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1.  INTRODUCTION 

The solution of canonical problems such as half-

plane, cylinder or sphere are important in the sense of 

diffraction theory and strip is one of the most important 

canonical structure. Due to its geometry, it’s frequently 

used to investigate the multiple diffraction 

phenomenon. Furthermore, especially in remote 

sensing, a large number of practical problems can be 

simulated by conducting strip. On the other hand, 

diffraction by a slit in a infinite conducting plane can 

be reduced to a perfectly conducting strip problem by 

using the duality principle. Therefore, due to its 

conformity to many practical problems, strips have 

been extensively investigated by many authors by using 

different analytical and numerical methods [2-10]. 

As known, the electrical size of body limits the 

tractability of numerical methods while the geometrical 

complexity of the object restricts the applicability of 

the analytical methods. Therefore, hybrid methods are 

frequently used for the asymptotic solution of the 

problem at high frequencies. 

Essentially, the hybrid methods involve the 

combined usage of Geometrical Theory of diffraction 

(GTD) and Moment Method (MM) (Field based 

analysis) [11-13] or Physical Theory of Diffraction 

(PTD) and MM (Current based analysis) [14]. 

An alternative method was proposed by Veliev 

[15]. In this analytical-numerical method, the integral 

equation derived in spectral domain is reduced to a set 

of linear equations in terms of unknown Fourier 

coefficient of the induced current density function. 

After determining the unknown coefficient solving the 

set of linear equations, the surface current density and 

scattered field and then, current and field related 

quantities can be expressed. Scattering from an 

impedance strip was solved by using this method by us 

[1]. The reduction of integral equation in spectral 

domain into a set of linear equations is the essence of 

this method and includes analytical solutions of 

integrals. There are some mathematical difficulties in 

this stage. In this study, when only field expression and 

radar cross section are required at high frequencies, an 

approximate solution was obtained by overcoming 

these mathematical difficulties. Besides conducting 

strip, this approach can be used for resistive and 

impedance strips as well as for the systems of formed 

by any kind of strips. 
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2.  FORMULATION OF THE PROBLEM 

An infinitely long perfectly conducting strip of 

width 2a is placed in coordinate system as show in 

Figure 1. Since the strip is uniform along the z-axis, the 

problem can be reduced to a two dimensional problem.  

The time dependence of the fields are assumed exp(-

jωt) and suppressed throughout the analysis. 

 

 

Fig. 1. The geometry of the problem. 

 

The incident field is given as a linearly polarized plane 

wave as 
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Here, 0 0cos   and k is the wave number. Total 

field will be expressed as the sum of incident and 

scattered fields: 
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By using Green’s theorem, the scattered field can be 

expressed in terms of the currents induced on the 

surface of the strip as 
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Here ( ')eI x and ( ')mI x are the electric and magnetic 

currents respectively induced on the strip and 
(1)

0 (.)H is Hankel function. Using boundary conditions 

the currents are expressed as 
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and considering the boundary conditions for a perfectly 

conducting strip, it is easily calculated that the 

magnetic current induced on the strip is zero. Induction 

of both currents is possible for an impedance strip only. 

So Eq. (3) is reduced to 
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By using the following Maxwell’s equation 
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in Eq. (5), one can obtain that 
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Defining a new function, ( )ef x  as the difference of 

the terms in parentheses  

0 ( ) ( )e ekZ I x jf x                                                (10) 

is found. In terms of this new function Eq. (6) becomes 
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On the surface, the total field must be zero: using y=0 

at Eq. (11) the integral equation for the function ( )ef x  

is derived as follows: 
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If one use the integral expression of Hankel function 

given below 
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for y=0 in Eq. (12) 
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is obtained. Changing the order of the integrals 
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is found. Considering that 
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Eq. (16) can be reduced to the following form: 
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This equation is the integral equation of ( )F   in 

spectral domain. In order to normalize the boundaries 

of the integral in Eq. (16), let 

x a  and .ka                                                (18) 

By using these transformations in Eq. (16) 
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and assuming 
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the following expression is derived 
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If Eq. (21) is used in Eq. (17) 
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is obtained. When both sides of this equation are 

multiplied by 
je 

 and by taking the integrals in the 

range of -1 to +1  

0

1 1

( ) ( )

1 1

4 ( ) '
j jj e d F e d d
         

  

  

  

 
   

 
   (23) 

is found. The expression on the left side of this 

equation will be 
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and the integral in the parentheses on the right side will 

be 
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By using equations (24) and (25) in Eq. (23) 
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is obtained. Although the solution of this integral 

equation is possible analytically, it is quite difficult at 

the same time. However for 1ka    we have that 
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And again using Eq. (28) 
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is derived. Here    is the observation angle, 

0 0cos   and cos  : so, substituting to Eq. 

(30) the following expression is derived: 
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2.1.  Asymptotic Expression of the Scattered Field 

One can get the expression of the scattered field 

from Eq. (11) as follows 
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Since the asymptotic expression of Hankel function is 

given as 
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So using Eq. (33) in Eq. (32) 
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 is found. With Eq. (21), the scattered field can be 

obtained as 
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Expressing the scattered field in a cylindrical wave 

form as 
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is the radiation pattern of the scattered field while 
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is the amplitude function. 

 

3.  NUMERICAL RESULTS 

Bistatic radar cross section for a TM-wave is given as 

[16] 
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When the expression of the transformed current is used 

in Eq. (41)  
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is obtained. Bistatic radar cross sections were given for 

strips of widths of 4.5  (2a=4.5 ) and 10  

(2a=10 ) in Figure 2 and Figure 3 respectively. 

 

 

 

(a) 

 

 

(b) 

Fig. 2. Bistataic radar cross sections obtained by (a) Su 

[16] and (b) us respectively for 2a=4.5λ. 

 

 

 

(a)  

 
(b) 

Fig. 3. Bistataic radar cross sections obtained by (a) Su 

[16] and (b) us respectively for 2a=16λ. 

 

For the strip of width of 4.5λ, there is difference 

about 10dB between our and Su’s results. For the strip 

width of 4,5λ, this difference is reduced. In other 

words, the approach gives more accurate results with 

increasing frequency. However, scattered patterns 

overlap with the solutions of Su for each strip. 

 

4.  CONCLUSION 

Scattering from a perfectly conducting strip was 

solved eliminating the mathematical complexity by an 

approximate method. Although this method was 

applied on perfectly conducting strip, it can be 

developed on impedance and resistive strips and strips 

which have different surface impedances.  

While the frequency ( ka  ) increases, the 

accuracy of the method increases also. However, more 

importantly, form of the scattering pattern can be 

obtained accurately for any frequency. This means that 
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the form of the scattering pattern can be obtained easily 

for any strip at any frequency if it’s the only required 

quantity. It is thought that this property of the 

approximation is valuable. 
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