Investigation of the Effects of Dimensional Inaccuracies on the First Natural Frequency of Cellular Lattice Structures
Subject Areas :
vibration and control
Amir Hosein Samimi
1
,
Mohammad Reza Karamooz-Ravari
2
,
Reza Dehghani
3
1 - Faculty of Mechanical and Materials Engineering
Kerman Graduate University of Advanced Technology, Iran
2 - Faculty of Mechanical and Materials Engineering
Kerman Graduate University of Advanced Technology, Iran
3 - Faculty of Mechanical and Materials Engineering
Kerman Graduate University of Advanced Technology, Iran
Received: 2021-11-30
Accepted : 2022-04-30
Published : 2022-09-01
Keywords:
References:
Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G., and Gibson, L. J., Metal Foams: A Design Guide, Butterworth-Heinemann, Oxford, UK, Chaps. 4, 5, 2000.
Banhart, J., Manufacturing Routes for Metallic Foams, Jom, Vol. 52, No. 12, 2000, pp. 22-27, DOI:10.1007/s11837-000-0062-8.
Meisel, N. A., Williams, C. B., and Druschitz, A., Lightweight Metal Cellular Structures Via Indirect 3D Printing and Casting, Proceedings of The International Solid Freeform Fabrication Symposium, Austin, United States, 2012, pp. 162-176.
Di Taranto, R. A., Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams, Appl. Mech, Vol. 32, No. 4, 1965, pp. 881-886, DOI:1115/1.3627330.
Kim, H. Y., Hwang, W., Effect of Debonding on Natural Frequencies and Frequency Response Functions of Honeycomb Sandwich Beams, Composite Structures, Vol. 55, No. 1, 2002, pp. 51-62, DOI:1016/S0263-8223(01)00136-2.
Lou, J., Ma, L., and Wu, L. Z., Free Vibration Analysis of Simply Supported Sandwich Beams With Lattice Truss Core, Materials Science and Engineering: B, Vol. 177, No. 19, 2012, pp. 1712-1716, DOI:1016/j.mseb.2012.02.003.
Xu, M., Qiu, Z., Free Vibration Analysis and Optimization of Composite Lattice Truss Core Sandwich Beams with Interval Parameters, Composite Structures, Vol. 106, 2013, pp. 85-95, DOI:1016/j.compstruct.2013.05.048.
Niu, B., Yan, J., and Cheng, G., Optimum Structure with Homogeneous Optimum Cellular Material for Maximum Fundamental Frequency, Structural and Multidisciplinary Optimization, Vol. 39, No. 2, 2009, pp. 115-132.
Azmi, M. S., Ismail, R., Hasan, R., Alkahari, M. R., and Tokoroyama, T., Vibration Analysis of FDM Printed Lattice Structure Bar, Proceedings of SAKURA Symposium on Mechanical Science and Engineering, Nagoya, Japan, September, 2017, pp. 33-35.
Andresen, S., Bäger, A., and Hamm, C., Eigenfrequency Maximisation by Using Irregular Lattice Structures, Journal of Sound and Vibration, Vol. 465, 2020, 115027.
Braun, M., Ivanez, I., and Aranda-Ruiz, J., Numerical Analysis of The Dynamic Frequency Responses of Damaged Micro-Lattice Core Sandwich Plates, The Journal of Strain Analysis for Engineering Design, Vol. 55, No. 1-2, 2020, pp. 31-41, DOI: 1177/0309324719890958.
Monkova, K., Vasina, M., Zaludek, M., Monka, P. P., and Tkac, J., Mechanical Vibration Damping and Compression Properties of a Lattice Structure, Materials, Vol. 14, No. 6, 2021, 1502, DOI: 3390/ma14061502.
Wang, X., Zhang, P., Ludwick, S., Belski, E., and To, A. C., Natural Frequency Optimization of 3D Printed Variable-Density Honeycomb Structure Via a Homogenization-Based Approach, Additive Manufacturing, Vol. 20, 2018, pp. 189-198, DOI: 1016/j.addma.2017.10.001.
Ravari, M. K., Kadkhodaei, M., Badrossamay, M., and Rezaei, R., Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling, International Journal of Mechanical Sciences, Vol. 88, 2014, pp. 154-161, DOI:1016/j.ijmecsci.2014.08.009.
Ravari, M. K., Kadkhodaei, M., A Computationally Efficient Modeling Approach for Predicting Mechanical Behavior of Cellular Lattice Structures, Journal of Materials Engineering and Performance, Vol. 24, No. 1, 2015, pp. 245-252, DOI:1007/s11665-014-1281-4.
Zhou, J., Shrotriya, P., and Soboyejo, W. O., On the Deformation of Aluminum Lattice Block Structures: From Struts to Structures, Mechanics of Materials, Vol. 36, No. 8, 2004, pp. 723-737, DOI:1016/j.mechmat.2003.08.007.
Galarreta, S. R., Jeffers, J. R., and Ghouse, S., A Validated Finite Element Analysis Procedure for Porous Structures, Materials & Design, Vol. 189, 2020, 108546, DOI:1016/j.matdes.2020.108546.
Syam, W. P., Jianwei, W., Zhao, B., Maskery, I., Elmadih, W., and Leach, R., Design and Analysis of Strut-Based Lattice Structures for Vibration Isolation, Precision Engineering, Vol. 52, 2018, pp. 494-506, DOI:10.1016/j.precisioneng.2017.09.010.
Echeta, I., Feng, X., Dutton, B., Leach, R., and Piano, S., Review of Defects in Lattice Structures Manufactured by Powder Bed Fusion, The International Journal of Advanced Manufacturing Technology, Vol. 106, No. 5, 2020, pp. 2649-2668, DOI:10.1007/s00170-019-04753-4.
Arabnejad, S., Johnston, R. B., Pura, J. A., Singh, B., Tanzer, M., and Pasini, D., High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints, Acta biomaterialia, Vol. 30, 2016, pp. 345-356.
Cuadrado, A., Yánez, A., Martel, O., Deviaene, S., and Monopoli, D., Influence of Load Orientation and of Types of Loads on The Mechanical Properties of Porous Ti6Al4V Biomaterials, Materials & Design, Vol. 135, 2017, pp. 309-318, DOI:10.1016/j.matdes.2017.09.045.