Bending and Buckling Analysis of a Nth-Order Shear Deformation Nanoplate using Modified Couple Stress Theory
Subject Areas :
micro and nano mechanics
Majid Eskandari shahraki
1
,
mahmoud shariati
2
,
naser asiaban
3
1 - Department of Aerospace Engineering,
Ferdowsi University of Mashhad, Mashhad, Iran
2 - Department of Mechanical Engineering,
Ferdowsi University of Mashhad, Mashhad, Iran
3 - Department of Mechanical Engineering,
Ferdowsi University of Mashhad, Mashhad, Iran
Received: 2020-11-15
Accepted : 2021-02-23
Published : 2021-12-01
Keywords:
References:
Daghigh, H., Daghigh, V., Milani, A., Tannant, D., Lacy, T. E., and Reddy, J. N, Nonlocal Bending and Buckling of Agglomerated CNT-Reinforced Composite Nanoplates, Composites Part B: Engineering, 183, 2020, 107716. DOI:10.1016/j.compositesb.2019.107716.
Daikh, A. A., Houari, M. S. A., and Eltaher, M. A, A Novel Nonlocal Strain Gradient Quasi-3D Bending Analysis of Sigmoid Functionally Graded Sandwich Nanoplates. Composite Structures, In Press, 2020, 113347. DOI:10.1016/j.compstruct.2020.113347.
Ruocco, E., & Reddy, J. N, Buckling analysis of elastic–plastic nanoplates resting on a Winkler–Pasternak foundation based on nonlocal third-order plate theory. International Journal of Non-Linear Mechanics, 121, 2020, 103453, DOI:10.1016/j.ijnonlinmec.2020.103453.
Banh Thien, T., Dang Trung, H., Le Anh, L., Ho Huu, V., and Nguyen Thoi, T., Buckling Analysis of Non-Uniform Thickness Nanoplates in an Elastic Medium Using the Isogeometric Analysis. Composite Structures, 162, 2017, pp. 182-193. DOI:10.1016/j.compstruct.2016.11.092.
Yang, F., Chong, A. C. M., Lam, D. C. C., and Tong, P., Couple Stress Based Strain Gradient Theory for Elasticity, Int. J. Solids Struct, 39, 2002, pp. 2731–2743, DOI: 10.1016/S0020-7683(02)00152-X.
Toupin, R. A., Elastic Materials with Couple Stresses, Arch. Rational Mech. Anal, 11, 1962, pp. 385–414.
Mindlin, R. D., Tiersten, H. F., Effects of Couple-Stresses in Linear Elasticity, Arch. Rational Mech. Anal, 11,1962, pp. 415–448.
Koiter, W. T., Couple Stresses in The Theory of Elasticity, I and II. Proc. K. Ned. Akad. Wet. (B), 67, 1964, pp. 17–44.
Mindlin, R. D., Micro-Structure in Linear Elasticity, Arch. Rational Mech. Anal, 16, 1964, pp. 51–78.
Tsiatas, G. C., A New Kirchhoff Model Based On a Modified Couple Stress Theory, International Journal of solids and structures, No. 46, 2009, pp. 2757-2764. DOI: 10.1016/j.ijsolstr.2009.03.004.
Wang, B., Zhou, S., Zhao, J., and Chen, X., Asize-Dependent Kirchhoff Micro-Plate Model Based On Strain Gradient Elasticity Theory, European Journal of Mechanics A/Solids, No. 30, 2011, pp. 517-524. DOI: 10.1016/j.euromechsol.2011.04.001.
Farajpour, A., Shahidi, A. R., Mohammadi, M., and Mahzoon, M., Buckling of Orthotropic Micro/Nanoscale Plates Under Linearly Varying In-Plane Load Via Nonlocal Continuum Mechanics, Composite Structures, No. 94, 2012, pp. 1605-1615. DOI:10.1016/j.compstruct.2011.12.032.
Tai, T., Ho Choi, D., Size-Dependent Functionally Graded Kirchhoff and Mindlin Plate Theory Based On a Modified Couple Stress Theory, Composite Structures, No. 95, 2013, pp.142-153. DOI: 10.1016/j.compstruct.2012.08.023.
Akgoz, B., Civalek, O., Free Vibration Analysis for Single –Layered Graphene Sheets in an Elastic Matrix Via Modified Couple Stress Theory, Materials and Design, No. 42, 2012, pp. 164-171. DOI: 10.1016/j.matdes.2012.06.002
Roque, C. M. C., Ferreira, A. J. M., and Reddy, J. N., Analysis of Mindlin Micro Plates with A Modified Couple Stress Theory and Meshlessmethod, Applied Mathematical Modeling, No. 37, 2013, pp. 4626-4633. DOI: 1016/j.apm.2012.09.063.
Thai, H. T., Kim, S. E., A Size-Dependent Functionally Graded Reddy Plate Model Based On a Modified Couple Stress Theory, Composites Part B: Engineering, Vol. 45, 2013, pp. 1636-1645. DOI:10.1016/j.compositesb.2012.09.065.
Lou, J., He, L., and Du, J., A Unified Higher Order Plate Theory for Functionally Graded Microplates Based On the Modified Couple Stress Theory, Composite Structures, No. 133, 2015, 1036-1047. DOI: 10.1016/j.compstruct.2015.08.009.
Xiang, S., Kang, G. w., A Nth-Order Shear Deformation Theory for The Bending Analysis On the Functionally Graded Plates, European Journal of Mechanics - A/Solids, No. 37, 2013, 336-343. DOI: 10.1016/j.euromechsol.2012.08.005.