Design, Modeling and Manufacturing a New Robotic Gripper with High Load Bearing Capability and Robust Control of its Mechanical Arm
Subject Areas : roboticsvahid Boomeri 1 , Hami Tourajizadeh 2
1 - Department of Mechanical Engineering, Faculty of Engineering,
University of Kharazmi, Tehran, Iran
2 - Department of Mechanical Engineering, Faculty of Engineering,
University of Kharazmi, Tehran, Iran
Keywords:
Abstract :
[1] Zhang, J., Fang, X., Challenges and Key Technologies in Robotic Cell Layout Design and Optimization, Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, Vol. 231, No. 15, 2017, pp. 2912-24.
[2] Bicchi, A., Hands for Dexterous Manipulation and Robust Grasping: a Difficult Road Toward Simplicity, IEEE Transactions on Robotics and Automation, Vol. 16, No. 6, 2000, pp. 652-62.
[3] Hsu, J., Yoshida, E., Harada, K., and Kheddar, A., Editors., Self-Locking Underactuated Mechanism for Robotic Gripper, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017, IEEE.
[4] Rojas, N., Ma, R. R., and Dollar, A. M., The GR2 Gripper: an Underactuated Hand for Open-Loop in-Hand Planar Manipulation, IEEE Transactions on Robotics, Vol. 32, No. 3, 2016, pp. 763-70.
[5] Puig, J. E. P., Rodriguez, N. E. N., and Ceccarelli, M., A Methodology for the Design of Robotic Hands with Multiple Fingers, International Journal of Advanced Robotic Systems, Vol. 5, No. 2, 2008, pp. 1-22.
[6] Choi, M. S., Lee, D. H., Park, H., Kim, Y. J., Jang, G. R, and Shin, Y. D., et al., Editors., Development of Multi-Purpose Universal Gripper, 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 2017, IEEE.
[7] Takaki, T., Omata, T., High-Performance Anthropomorphic Robot Hand with Grasping-Force-Magnification Mechanism, IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 3, 2010, pp. 583-91.
[8] Liu, C. H., Chiu, C. H., Editors., Design and Prototype of Monolithic Compliant Grippers for Adaptive Grasping, 2018 3rd International Conference on Control and Robotics Engineering (ICCRE), 2018, IEEE.
[9] Yi, B. J., Na, H. Y., Lee, J. H., Hong, Y. S., Oh, S. R., and Suh, I. H., et al., Design of a Parallel-Type Gripper Mechanism, The International Journal of Robotics Research, Vol. 21, No. 7, 2002, pp. 661-76.
[10] Kocabas, H., Gripper Design with Spherical Parallelogram Mechanism, Journal of Mechanical Design, Vol. 131, No. 7, 2009, pp. 075001.
[11] Jiang, L., Guan, Y., Zhou, X., Zhang, X., and Zhang, H., Editors., Grasping Analysis for a Biped Climbing Robot, 2010 IEEE International Conference on Robotics and Biomimetics, 2010, IEEE.
[12] Tavakoli, M., Marques, L., 3DCLIMBER: Climbing and Manipulation Over 3D Structures, Mechatronics, Vol. 21, No. 1, 2011, pp. 48-62.
[13] Mampel, J., Gerlach, K., Schilling, C., and Witte, H., A Modular Robot Climbing On Pipe-Like Structures, 4th International Conference on Autonomous Robots and Agents 2009, Feb 10 ,pp. 87-91, IEEE.
[14] Abderrahim, M., Balaguer, C., Giménez, A., Pastor, J. M., and Padron, V. M., ROMA: A Climbing Robot for Inspection Operations, In Proceedings 1999 IEEE International Conference on Robotics and Automation, 1999, IEEE.
[15] Nagaoka, K., Minote, H., Maruya, K., Shirai, Y., Yoshida, K., Hakamada, T., Sawada, H., and Kubota, T., Passive Spine Gripper for Free-Climbing Robot in Extreme Terrain, IEEE Robotics and Automation Letters, Vol. 3, No. 3, 2018, pp. 1765-70.
[16] Rahman, N., Carbonari, L., Caldwell, D., and Cannella, F., Kinematic Analysis, Prototypation and Control of a Novel Gripper for Dexterous Applications, Journal of Intelligent & Robotic Systems, Vol. 91, No. 2, 2018, pp. 193-206.
[17] Heidari, H., Pouria, M. J., Sharifi, S., and Karami, M., Design and Fabrication of Robotic Gripper for Grasping in Minimizing Contact Force, Advances in Space Research, Vol. 61, No. 5, 2018, pp. 1359-1370.
[18] Bai, G., Kong, X., and Ritchie, J. M., Kinematic Analysis and Dimensional Synthesis of a Meso-Gripper, Journal of Mechanisms and Robotics, Vol. 9, No. 3, 2017, pp. 031017.
[19] Borisov, I. I., Borisov, O. I., Gromov, V. S., Vlasov, S. M., Dobriborsci, D., and Kolyubin, S. A., Design of Versatile Gripper with Robust Control, IFAC-Papers On Line, Vol. 51, No. 22, 2018, pp. 56-61.
[20] Slotine, J. J., Sastry, S. S., Tracking Control of Non-Linear Systems Using Sliding Surfaces, with Application to Robot Manipulators, International Journal of Control, Vol. 38, No. 2, 1983, pp. 465-92.
[21] Slotine, J. J. E., The Robust Control of Robot Manipulators, The International Journal of Robotics Research, Vol. 4, No. 2, 1985, pp. 49-64.
[22] Slotine, J. J. E., Li, W., On the Adaptive Control of Robot Manipulators, the International Journal of Robotics Research, Vol. 6, No. 3, 1987, pp. 49-59.
[23] Huang, A. C., Chen, Y. C., Adaptive Sliding Control for Single-Link Flexible-Joint Robot with Mismatched Uncertainties, IEEE Transactions on Control Systems Technology, Vol. 12, No. 5, 2004, pp. 770-5.
[24] Parra Vega, V., Arimoto, S., Liu, Y. H., Hirzinger, G., and Akella, P., Dynamic Sliding PID Control for Tracking of Robot Manipulators: Theory and Experiments, IEEE Transactions on Robotics and Automation,Vol. 19, No. 6, 2003, pp. 967-76.
[25] Harashima, F., Hashimoto, H., and Maruyama, K., Editors., Practical Robust Control of Robot Arm Using Variable Structure System, Proceedings 1986 IEEE International Conference on Robotics and Automation, 1986, IEEE.
[26] Talole, S., Phadke, S., Model Following Sliding Mode Control Based On Uncertainty and Disturbance Estimator, Journal of Dynamic Systems, Measurement, and Control, Vol. 130, No. 3, 2008, pp. 034501.
[27] Young, K. D., Utkin, V. I., and Ozguner, U., Editors., A Control Engineer's Guide to Sliding Mode Control, Proceedings 1996 IEEE International Workshop on Variable Structure Systems-VSS'96, 1996, IEEE.
[28] Slotine, J. J. E., Li, W., Applied Nonlinear Control: Prentice Hall Englewood Cliffs, NJ, 1991.
[29] Asada, H., Slotine, J. J., Robot Analysis and Control, John Wiley & Sons, 1986.