Design, Modeling and Adaptive Force Control of a New Mobile Manipulator with Backlash Disturbances
Subject Areas : roboticsHami Tourajizadeh 1 , Samira Afshari 2
1 - Department of Mechanical Engineering, Faculty of Engineering,
University of Kharazmi, Tehran, Iran
2 - Department of Mechanical Engineering, Faculty of Engineering,
University of Kharazmi, Tehran, Iran
Keywords:
Abstract :
[1] Jakubiak, J., Małek, Ł., and Tchoń, K., A New Inverse Kinematics Algorithm for Nonholonomic Mobile Robots, IFAC Proceedings Vol.42. No. 13, 2009, pp. 647-652.
[2] Trojnacki, M., Dąbek, P., Studies of Dynamics of a Lightweight Wheeled Mobile Robot During Longitudinal Motion on Soft Ground, Mechanics Research Communications, Vol. 82, 2017, pp. 36-42.
[3] Khanpoor, A., Khalaji, A. K., and Moosavian, S. A. A., Dynamics Modeling and Control of a Wheeled Mobile Robot with Omni-Directional Trailer, In Electrical Engineering (ICEE), 2014 22nd Iranian Conference on. 2014. IEEE.
[4] Sharma, A., Panwar, V., Control of Mobile Robot for Trajectory Tracking by Sliding Mode Control Technique. in Electrical, Electronics, and Optimization Techniques (ICEEOT), International Conference on. 2016. IEEE.
[5] Hassanzadeh, I., Madani, K., and Badamchizadeh, M. A., Mobile Robot Path Planning Based on Shuffled Frog Leaping Optimization Algorithm, In Automation Science and Engineering (CASE), IEEE Conference on, 2010. IEEE.
[6] Shojaei, K., Shahri, A. M., and Tarakameh, A., Adaptive Feedback Linearizing Control of Nonholonomic Wheeled Mobile Robots in Presence of Parametric and Nonparametric Uncertainties, Robotics and Computer-Integrated Manufacturing, Vol. 27, No. 1, 2011, pp. 194-204.
[7] Chen, Y. H., Li, T. H. S. and Chen, Y. Y., A Novel Nonlinear Control Law with Trajectory Tracking Capability for Nonholonomic Mobile Robots: Closed-form Solution Design, Applied Mathematics & Information Sciences, Vol. 7, No. 2, 2013, pp. 749.
[8] Koubaa, Y., Boukattaya, M., and Dammak, T., Adaptive Control of Nonholonomic Wheeled Mobile Robot with Unknown Parameters, In Modelling, Identification and Control (ICMIC), 7th International Conference on, 2015, IEEE.
[9] Korayem, M., Shafei, A., Motion Equation of Nonholonomic Wheeled Mobile Robotic Manipulator with Revolute–Prismatic Joints Using Recursive Gibbs–Appell Formulation, Applied Mathematical Modelling, Vol. 39, No, 5-6, 2015, pp. 1701-1716.
[10] Seidi, E., et al. Dynamic Modeling and Parametric Analysis of Dual Arm Manipulator with Revolute-Prismatic Joints Mounted on a Nonholonomic Mobile Base, In Robotics and Mechatronics (ICROM), 3rd RSI International Conference on, 2015, IEEE.
[11] Korayem, M., et al., Analysis and Experimental Study of Non-Holonomic Mobile Manipulator in Presence of Obstacles for Moving Boundary Condition, Acta Astronautica, Vol. 67, No. 7-8, 2010, pp. 659-672.
[12] Korayem, M., Shafei, A., and Seidi, E., Symbolic Derivation of Governing Equations for Dual-Arm Mobile Manipulators Used in Fruit-Picking and the Pruning of Tall Trees, Computers and Electronics in Agriculture, Vol. 105, 2014, pp. 95-102.
[13] Deepak, B., Parhi, D. R. and Praksh, R., Kinematic Control of a Mobile Manipulator. in Proceedings of the International Conference on Signal, Networks, Computing, and Systems. 2016. Springer.
[14] Boukens, M., Boukabou, A., and Chadli, M., Robust Adaptive Neural Network-Based Trajectory Tracking Control Approach for Nonholonomic Electrically Driven Mobile Robots, Robotics and Autonomous Systems, Vol. 92, 2017, pp. 30-40.
[15] Djebrani, S., Benali, A., and Abdessemed, F., Impedance Control of an Omnidirectional Mobile Manipulator, IFAC Proceedings Vol. 42, No. 13, 2009, pp. 519-524.
[16] Lippiello, V., Ruggiero, F., Cartesian Impedance Control of a UAV with a Robotic Arm. 2012.
[17] Wang, Y., Mai, T., and Mao, J., Adaptive Motion/Force Control Strategy for Non-Holonomic Mobile Manipulator Robot Using Recurrent Fuzzy Wavelet Neural Networks, Engineering Applications of Artificial Intelligence, Vol. 34, 2014, pp. 137-153.
[18] Yin, X., Pan, L., Enhancing Trajectory Tracking Accuracy for Industrial Robot with Robust Adaptive Control, Robotics and Computer-Integrated Manufacturing, Vol. 51, 2018, pp. 97-102.
[19] Gracia, L., et al., Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback, Mechatronics, Vol. 52, 2018, pp. 102-118.
[20] Fedaravičius, A., Ragulskis, M., and Sližys, E., Dynamic Synthesis of the Recoil Imitation System of Weapons, Mechanics, Vol. 51, No. 1, 2005, pp. 44-48.
[21] Spong, M.W., Hutchinson, S., and Vidyasagar, M., Robot Modeling and Control, 2006.
[22] Slotine, J. J. E., Li, W., Applied Nonlinear Control. Vol. 199. 1991: Prentice hall Englewood Cliffs, NJ.
[23] Schilling, R. J., Fundamentals of Robotics: Analysis and Control, Vol. 629. 1990: Prentice Hall New Jersey.