Experimental Investigation of Pool Boiling of Single Wall Carbon Nanotubes (SWCNTs) with Different Grooved Surfaces
Subject Areas : Mechanical EngineeringAmir Vasei Moghadam 1 , Hamid Reza Goshayeshi 2
1 - Department of Mechanical Engineering
Islamic Azad University, Mashhad Branch, Mashhad, Iran
2 - Department of Mechanical Engineering
Islamic Azad University, Mashhad Branch, Mashhad, Iran
Keywords:
Abstract :
[1] Wen, D., Ding. Y., Experimental Investigation into the Pool Boiling Heat Transfer of Aqueous Based C-Alumina Nanofluids, J. Nanopart. Res. Vol. 7, No. 2, 2005, pp. 265–274.
[2] Wen, D., Ding, Y., Experimental Investigation into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids, J. of Nanoparticle Research, Vol. 7, No. 2, 2005, pp. 265-274.
[3] Ham, J., Kim, H., Shin, Y., and Cho, H., Experimental Investigation of Pool Boiling Characteristics in Al2O3 Nanofluid According to Surface Roughness and Concentration, Int. J. of Thermal Sciences, Vol. 114, 2017, pp. 86-97.
[4] Bang, I. C., Chang, S. H., Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nanofluids from A Plain Surface in a pool, Int. J. Heat Mass Transf. Vol. 48, No. 12, 2005, pp. 2407–2419.
[5] Cieslinski, J. T., Kaczmarczyk, T. Z., Pool Boiling of Water-Al2O3 and Water-Cu Nanofluids on Horizontal Smooth Tubes, Nanoscale Research Letters, Vol. 6, No. 1, 2011, pp. 220-221.
[6] Kwark, S. M., Kumar, R., Moreno, G., Yoo, J., and Yoo, S. M., Pool Boiling Characteristics of Low Concentration Nanofluids, Int. J. Heat and Mass Transfer, Vol. 53, No. 5, 2010, pp. 972-981.
[7] Karimipour, A., New Correlation for Nusselt Number of Nanofluid with Ag/Al2O3/Cu Nanoparticles in a Microchannel Considering Slip Velocity and Temperature Jump by Using Lattice Boltzmann Method, Int. J. Thermal Science, Vol. 91, 2015, pp. 146-156.
[8] Vafaei, S., Nanofluid Pool Boiling Heat Transfer Phenomenon, Vol. 277, 2015, pp. 181-192
[9] Heris, S. Z., Experimental Investigation of Pool Boiling Characteristics of Low-Concentrated CuO/Ethylene Glycol–Water Nanofluids, Int. Communications in Heat and Mass Transfer, Vol. 38, No. 10, 2011, pp. 1470 -1473.
[10] Sarafraz, M. M., Hormozi, F., Pool Boiling Heat Transfer to Dilute Copper Oxide Aqueous Nanofluids, Int. J. of Thermal Sciences, Vol. 90, 2015, pp. 224-237.
[11] Umesh, V., Raja, B., A Study on Nucleate Boiling Heat Transfer Characteristics of Pentane and CuO-Pentane Nonofluid on Smooth and Milled Surfaces, Thermal Fluid Sci, Vol. 64, 2015, pp. 23-29.
[12] Dehghani Ashkezari, E., Salimpour, M. R., Effect of Groove Geometry on Pool Boiling Heat Transfer of Water-Titanium Oxide Nonofluid, J. of Heat and Mass Transfer, Vol. 11, 2018.
[13] Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with Crystalline TiO2 Nanostructure, Applied Thermal Engineering, Vol. 113, 2017, pp. 1345-1357.
[14] Ali, H. M., Generous, M. M., Ahmad, F., and Irfan, M., Experimental Investigation of Nucleate Pool Boiling Heat Transfer Enhancement of TiO2-Water Based Nanofluids, Applied Thermal Engineering, Vol. 113, 2017, pp. 1146-1151.
[15] Amiri, A., Shanbedi, M., Amiri, H., Heris, S. Z., Kazi, S. N., Chew, B. T., and Eshghi, H., Pool Boiling Heat Transfer of CNT/water Nanofluids, Applied Thermal Engineering, Vol. 71, No. 1, 2014, pp. 450-459.
[16] Kathiravan, R., Kumar, R., Gupta, A., Chandra, R., and Jain, P. K., Pool Boiling Characteristics of Multiwall Carbon Nanotube (CNT) Based Nanofluids over a Flat Plate Heater, Int. J. of Heat and Mass Transfer, Vol. 54, No. 5, 2011, pp. 1289-1296.
[17] Shahmoradi, Z., Etesami, N., and Nasr Esfahani, M., Pool Boiling Characteristics of Nanofluid on Flat Plate Based on Heater Surface Analysis, Int. Communication in Heat and Mass Transfer, Vol. 47, 2013, pp. 113-120.
[18] Das, S. K., Putra, N., and Roetzel, W., Pool Boiling of Nanofluids on Horizontal Narrow Tubes, International J. of Multiphase Flow, Vol. 29, No. 8, 2003, pp. 1237-1247.
[19] Das, S., Saha, B., and Bhaumik, S., Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization with SiO2 Nanostructure, Experimental Thermal and Fluid Science, Vol. 81, 2017, pp. 454-465.
[20] Qu, Z. G., Xu, Z., Zhao, C., and Tao, W., Experimental Study of Pool Boiling Heat Transfer on Horizontal Metallic Foam Surface with Crossing and Single- Directional V- Shaped Grooved in Saturated Water, Int. J. of Multiphase Flow, Vol. 41, 2012, pp. 44-55.
[21] Quan, X., Gao, M., Cheng, P., and Li, J., An Experimental Investigation of Pool Boiling on Smooth/Rib Surfaces Under an Electric Field, Int. J. of Heat and Mass Transfer, Vol. 85, 2015, pp. 595-606.
[22] Das, A. K., Das, P. K., and Saha, P., Nucleate Boiling of Water from Plain and Structured Surfaces, Experimental Thermal and Fluid Science, Vol. 31, No. 8, 2007, pp. 967-977,
[23] Das, A. K., Das, P. K., and Saha, P., Performance of Different Structured Surfaces in Nucleate Pool Boiling, Applied Thermal Engineering, Vol. 29, No. 17, 2009, pp. 3643-3653.
[24] Goshayeshi, H. R., Missenden, J. F., The Investigation of Cooling Tower Packing in Various Arrangements, J. of Applied Thermal Engineering, Vol. 20, 2000, pp. 69-80.
[25] Moffat, R. J., Describing the Uncertainties in Experimental Results, Experimental Thermal and Fluid Science, Vol. 1, No. 1, 1988, pp. 3-17.
[26] Passos, C. J., Reinaldo, R. F., Analysis of Pool Boiling Within Smooth and Grooved Tubes, Experimental Thermal and Fluid Science, Vol. 22, 2000, pp. 35-44.
[27] Lay, K. K., Ong, J. S., Young, K. Y., Tan, M. K., Hung, Y. M., Nucleate Pool Boiling Enhancement by Ultrafast Water Permeation in Graphene-Nanostructure. Vol. 101, 2019, pp. 26-34.
[28] Cornwell, M., Houston, S. D., Nucleate Pool Boiling on Horizontal Tubes: A Convective-Based Correlation, Int. J. of Heat and Mass Transfer, Vol. 37(suppl.1) 1994, pp. 303-309.