Effect of Burr Grinding on Fatigue Strength of Steel Butt-Welded Connections
Subject Areas : weldingAbbas Fadaei 1 , Annette Betkhoodu 2
1 - Bu-Ali Sina University
2 - Bu-Ali Sina University
Keywords:
Abstract :
[1] Kirkhope, K. J., Bell, R., Caron, L., Basu, R. I. and Ma, K. T., Weld Detail Fatigue Life Improvement Techniques: Part 1- Review, Marine Structures, Vol. 12, No. 6, 1999, pp. 447- 474.
[2] Haagensen, P. J., Maddox, S. J., Recommendations on Methods for Improving the Fatigue Strength of Welded Joints, International Institute of Welding, Commission XIII-1815-00, 2013.
[3] Clegg, R. E., Mcleod, A. J. and Ruddell, W., Effect of Toe Treatment on the Fatigue Resistance of Structural Steel Welds, Australasian Welding Journal, Vol. 58, No.3, 2013, pp. 34-41.
[4] Pedersen, M. M., Mouritsen, O. O., Hansen, M. R., Andersen, J. G. and Wenderby, J., Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue, International Institute of Welding, XIII-2272-09, 2010.
[5] Tai, M., Miki, C., Improvement Effects of Fatigue Strength by Burr Grinding and Hammer Peening under Variable Amplitude Loading, Welding in the world, Vol. 56, No. 7, 2012, pp. 109-117.
[6] Baptista, R., Infante, V., and Branco, C. M., Study of the Fatigue Behavior in Welded Joints of Stainless Steels Treated by Weld Toe Grinding and Subjected to Salt Water Corrosion, International Journal of Fatigue, Vol. 30, No. 3, 2008, pp. 453-462.
[7] Knight, J. W., Improving the Fatigue Strength of Fillet Welded Joints by Grinding and Peening, Welding Research International, Vol. 9, No. 6, 1978, pp. 519-540.
[8] Mohr, W. C., Tsai, C. and Tso, C. M., Fatigue Strength of Welds with Profile and Post-Weld Improvements, Proceedings of fourth International Conference Offshore Mechanics and Arctic Engineering, Copenhagen, 1995.
[9] Kirkhope, K. J., Bell, R., Caron, L., Basu, R. I. and Ma, K. T., Weld Detail Fatigue Life Improvement Techniques: Part 2- Application to Ship Structures, Marine Structures, Vol. 12, No. 6, 1999, pp. 477-496.
[10] Pang, H. L. J., Analysis of Weld Toe Radius Effects on Fatigue Weld Toe Cracks, International Journal of Pressure Vessel and Piping, Vol. 58, No. 2, 1994, pp. 171-177.
[11] Huther, I., et al., The Influence of Improvement Techniques on Welded Joint Fatigue Strength, IIW Document XIII-1562-94, 1994.
[12] Nguyen, T. N., Wahab, M. A., The Effect of Weld Geometry and Residual Stresses on the Fatigue of Welded Joints under Combined Loading, Journal of Materials Processing Technology, Vol. 77, No. 1-3, 1998, pp. 201-208.
[13] American Welding Society AWS-D1 Committee on Structural Welding, Structural Welding Code- Steel, 22th ed. American National Standards Institute, 2010.
[14] PFERD Tool Selection Manual, 22th ed., Section 203, Germany, August Rüggeberg GmbH & Co. KG, 2014.
[15] Fanous, I. F. Z., Younan, M. and Wifi, A., 3D Finite Element Modeling of the Welding Process Using Element Birth and Element Movement Techniques, International Journal of Pressure Vessel Technology, Vol. 125, No. 2, 2003, pp. 144-150.
[16] Barsoum, Z., Barsoum, I., Residual Stress Effects on Fatigue Life of Welded Structures Using LEFM, Engineering Failure Analysis, Vol. 16, No. 1, 2009, pp. 449-467.
[17] Goldak, J., Akhlaghi, M., Computational Welding Mechanics, New York, Springer, 2005.
[18] Gill, J., Singh, J., Effect of Welding Speed and Heat Input Rate on Stress Concentration Factor of Butt Welded Joint, International Journal of Advanced Engineering Research and Studies 2012, Vol. 1, No. 3, 2012, pp. 98-100.