A Surrogate Reduced Order Free Vibration Model of Linear and Non-Linear Beams using Modified Modal Coefficients and HOSVD Approaches
Subject Areas : Mechanical Engineering
1 - Department of Mechanical Engineering,
University of Qom, Iran
Keywords:
Abstract :
[1] Lucia, D. J., Beranb, P. S., and Silva, W. A., Reduced Order Modeling: New Approaches for Computational Physics, Progress in Aerospace Sciences, Vol. 40, 2004, pp. 51-117.
[2] Holmes, P., Lumley, J. L., and Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics, Cambridge University Press, 1996.
[3] Taeibi-Rahni, M., Sabetghadam, F., and Moayyedi, M. K., Low-Dimensional Proper Orthogonal Decomposition Modeling as a Fast Approach of Aerodynamic Data Estimation, Journal of Aerospace Engineering, Vol. 23, Issue 1, 2010, pp. 44-54.
[4] Sirovich, L., Kirby, M., Low-Dimensional Procedure for the Characterization of Human Faces, J. Optical Society of America, Vol. 4, No. 3, 1987, pp. 519–24.
[5] Shinde S., Pandy M., Modelling Fluid Structure Interaction Using One-way Coupling and Proper Orthogonal Decomposition, Proceedings of the 11th International Conference on Engineering Sciences (AFM 2016), At Ancona, Italy, 2016.
[6] Tissot, G., Cordier, L., Noack, B. R., Feedback Stabilization of an Oscillating Vertical Cylinder by Pod Reduced-Order Model, Journal of Physics: Conference Series, Vol. 574, 2015, pp. 012137.
[7] Feeny, B. F., Kappagantu, R., On the Physical Interpretation of Proper Orthogonal Modes in Vibration, Journal of Sound and Vibration, Vol. 211, No. 4, 1998, pp. 607-616.
[8] Han, S., Linking Proper Orthogonal Decomposition Modes and Normal Modes of the Structure, Proceedings of the 18th International Modal Analysis Conference (IMAC), 2000.
[9] Kereschen, G., Golinval, J. C., Physical Interpretation of the Proper Orthogonal Modes using the Singular Value Decomposition, Journal of Sound and Vibration, Vol. 249, No. 5, 2002, pp. 849-865.
[10] Han, S., Feeny, B., Application of Proper Orthogonal Decomposition to Structural Vibration Analysis, Mechanical Systems and Signal Processing, Vol. 17, No. 5, 2003, pp. 989-1001.
[11] Amabili, M., Sarkar, A., and Paı̈doussis, M. P., Reduced-Order Models for Nonlinear Vibrations of Cylindrical Shells Via the Proper Orthogonal Decomposition Method, Journal of Fluids and Structures, Vol. 18, No. 2, 2003, pp. 227-250.
[12] Lieu, T., Farhat, C., Adaptation of POD-Based Aeroelastic ROMs for Varying Mach Number and Angle of Attack: Application to a Complete F-16 Configuration, AIAA Paper 2005-7666, U.S. Air force T&E Days, Tennessee, 2005.
[13] Gonçalves, P. B., Prado, Z. J. G. N. D., Low-Dimensional Galerkin Models for Nonlinear Vibration and Instability Analysis of Cylindrical Shells, Nonlinear Dynamics, Vol. 41, No. 1, 2005, pp. 129-145.
[14] Georgiou, I., Advanced Proper Orthogonal Decomposition Tools: Using Reduced Order Models to Identify Normal Modes of Vibration and Slow Invariant Manifolds in the Dynamics of Planar Nonlinear Rods, Nonlinear Dynamics, Vol. 41, No. 1, 2005, pp. 69-110.
[15] Allison, T. C., System Identification via the Proper Orthogonal Decomposition, PhD Dissertation, Dep't Mechanical Engineering, Virginia Polytechnic Institute and State University, 2007.
[16] Gonçalves, P. B., Silva, F. M. A., Del Prado, Z. J. G. N., Low-dimensional Models for the Nonlinear Vibration Analysis of Cylindrical Shells Based on a Perturbation Procedure and Proper Orthogonal Decomposition, Journal of Sound and Vibration, Vol. 315, No. 3, 2008, pp. 641-663.
[17] Gonçalves, P. B., Silva, F. M. A., Del Prado, Z. J. G. N., Reduced Order Models for the Nonlinear Dynamic Analysis of Shells, Procedia IUTAM, Vol. 19, 2016, pp. 118-125.
[18] Speet, J., Parametric Rreduced Order Modeling of Structural Models by Manifold Interpolation Techniques, M.Sc. Thesis, Department of Mechanical Engineering at Delft University of Technology, 2017.
[19] Ilbeigi, S., A New Framework for Model Reduction of Complex Nonlinear Dynamical Systems, PhD Dissertation, Department of Mechanical Engineering at University of Rhode Island, 2017.
[20] Guo, M., Hesthaven, J. S., Reduced Order Modeling for Nonlinear Structural AnalysisU Gaussian Process Regression, Computer Methods in Applied Mechanics and Engineering, Vol. 341, 2018, pp. 807-826.
[21] Reddy, J. N., An Introduction to Finite Element Method, 3rd Edition, McGraw Hill, 2006.