Prediction of Residual Stresses by Radial Basis Neural Network in HSLA-65 Steel Weldments
Subject Areas : Mechanical Engineering
1 - Department of Mechanical Engineering,
Aligudarz Branch, Islamic Azad University, Aligudarz, Iran
Keywords:
Abstract :
[1] Montemarano, T. W., Sack, B. P., Gudas, J. P., Vassilaros, M. G., and Vanderveldt, H. H., “High Strength Low Alloy Steels in Naval Construction”, Journal of Ship Production, Vol. 2, No. 3, 1986, pp. 145–162.
[2] Czyryca, E. J., Link, R. E., Wong, R. J., Aylor, D. A., Montemarano, T. W., and Gudas, J. P., “Development and Certification of HSLA-100 Steel for Naval Ship Construction”, Naval Engineers Journal, Vol. 102, No. 3, 1990, pp. 63–82.
[3] DeLoach, J. J., Null, C., Flore, S., and Konkol, P., “The Right Welding Wire Could Help the U.S. Navy Save Millions”, Welding Journal, Vol. 78, No.6, 1999, pp. 55–58.
[4] Sampath, K., “An Understanding of HSLA-65 Plate Steels”, Journal of Materials Engineering and Performance, Vol. 15, No. 1, 2006, pp. 32-40.
[5] Barnes, S. J., Bhatti, A. R., Steuwer, A., Johnson, R., Altenkirch, J., and Withers, P. J., “Friction Stir Welding in HSLA-65 Steel: Part I. Influence of Weld Speed and Tool Material on Microstructural Development”, Metallurgical and Materials Transactions A., Vol. 43, No.7, 2012, pp. 2342-2355.
[6] Steuwer, A., Barnes, S. J., Altenkirch, J., Johnson, R., and Withers P. J., “Friction Stir Welding of HSLA-65 Steel: Part II. The Influence of Weld Speed and Tool Material on the Residual Stress Distribution and Tool Wear”, Metallurgical and Materials Transactions A, Vol. 43, No.7, 2012, pp. 2356-2365.
[7] Wei, L., Nelson, T. W., “Influence of Heat Input on Post Weld Microstructure and Mechanical Properties of Friction Stir Welded HSLA-65 Steel”, Materials Science and Engineering: A. Vol. 556, 2012, pp. 51–59.
[8] Nasser, S. N., Guo, W. G., “Thermo Mechanical Response of HSLA-65 Steel Plates: Experiments and Modeling”, Mechanics of Materials. Vol. 37, No. 2, 2005, pp. 379–405.
[9] Czyryca, E. J., Link, R. E., and Wong, R. J., “Evaluation of HSLA-100 Steel for Surface Combatant Structural Certification”, DTRC/SME-89/15, Bethesda, Maryland, 1989, pp. 1.
[10] Spanos, G., Fonda, R. W., Vandermeer, R. A., and Matuszski, A., “Microstrucral Change in HSLA-100 Steel Thermally Cycled Simulate the Heat–Affected Zone During Welding”, Metallurgical and Materials Transactions, Vol. 26, No.12, 1995, pp. 3277-3293.
[11] Blackburn, J. M. “An Overview of Some Current Research on the Welding Residual Stresses and Distortion in the U.S. Navy”, 1996, IIW Doc. X-1359-96.
[12] Ahmadzadeh, M., Hoseinifard, A., Saranjam, B., and Salimi, H. R., “Prediction of Residual Stresses in Gas arc Welding by Back Propagation Neural Network”, NDT & E International, Vol. 52, 2012, pp. 136–143.
[13] Zhang, J., Dong, P., and Brust, F., “Residual Stress Analysis and Fracture Assessment of Weld Joints in Moment Frames ASME. PVP-Fracture”, Fatigue and Weld Residual Stress, Vol. 393, 1999, pp. 201-207.
[14] Preston, R., Smith, S., Shercliff, H.,and Withers, P., “An Investigation in to the Residual Stresses in Aanaluminum 2024 Test Weld”, ASME. PVP—Fracture, Fatigue and Weld Residual Stress. Vol. 393, 1999, pp. 265-7.
[15] Dong, P., Hong, J., Bynum, J., and Rogers, P., “Analysis of residual stresses in Al–Li alloy repair welds”, ASME, PVP—Approximate Methods Des Anal Press Vessels Pip Compon, Vol. 347, 1997, pp. 61–75.
[16] Karlsson, R. I., Josefson, B. L., “Three-Dimensional Finite Element Analysis of Temperatures and Stresses in a Single-Pass Butt-Welded Pipe”, ASME J Pressure Vessel Technol, Vol. 112, 1990, pp. 76-84.
[17] Goldak, J., Chakravarti, A., and Bibby, M. A. “New Finite Element Model for Welding Heat Sources”, Metall Trans B, Vol. 15B, 1984, pp. 299-305.
[18] Goldak, J., “Distortion and Residual Stress in Welds: the Next Generation”, 8th Trends in Welding Research, 2009, pp. 45–52.
[19] Junek, L., Slovacek, M., Magula, V., and Ochodek, V., “Residual Stress Simulation Incorporating Weld HAZ Microstructure”, ASME PVP—Fracture, Fatigue and Weld Residual Stress. Vol. 393, 1999, pp. 179-92.
[20] Xu, S., Wang, W., “Numerical Investigation on Weld Residual Stresses in Tube to Tube Sheet Joint of a Heat Exchanger”, International Journal of Pressure Vessels and Piping, Vol. 101, 2013, pp. 37-44.
[21] Lee, C. H., Chang, K. H., “Prediction of Residual Stresses in High Strength Carbon Steel Pipe Weld Considering Solid-State Phase Transformation Effects”, Computers & Structures, Vol. 89, 2011, pp. 256-265.
[22] Pearce, S. V., Linton, V. M., and Oliver, E. C., “Residual Stress in a Thick Section High Strength T-Butt Weld. Materials Science and Engineering: A”, Vol. 480, 2008, pp. 411-418.
[23] Brown, T. B., Dauda, T. A., Truman, C. E., Smith, D. J., Memhard, D., and Pfeiffer, W., “Predictions and Measurements of Residual Stress in Repair Welds in Plates”, International Journal of Pressure Vessels and Piping, Vol. 83, 2006, pp. 809-818.
[24] Bae, I. H., Lim, D. H., Gyun, M. N, and Kim, J. W., “Prediction of Residual Stress in the Welding Zone of Dissimilar Metals Using Data-Based Models and Uncertainty Analysis”, Nuclear Engineering and Design, Vol. 240, 2010, pp. 2555–2564.
[25] Yajiang, L., Juan, W., Maoai, C., and Xiaoqin, S., “Finite Element Analysis of Residual Stress in the Welded Zone of a High Strength Steel”, Bull. Mater. Sci., Vol. 27, No. 2, 2004, pp. 127–132.
[26] Withers, P., Turski, M., Edwards, L., Bouchard, P., and Buttle, D., “Recent Advances in Residual Stress Measurement”, International Journal of Pressure Vessels and Piping, Vol. 85, No. 3, 2008, pp. 118-127.
[27] El-Kassas, E. M. A., Mackie, R. I., and El-Sheikh, A. I., “Using Neural Networks in Cold-Formed Steel Design”, Computers & Structures, Vol. 79, 2001, pp. 1687-1696.
[28] Freeman, J. A., “Simulating Neural Networks”, Addison–Wesley Publishing Company, Inc., New York, 1994.
[29] Wasserman, P. D., “Neural Computing: Theory and Practice”, Van Nostrand Reinhold, New York, 1989.
[30] Heidari, M., Homaei, H., “Design of a PID Controller for Suspension System by Back Propagation Neural Network”, Journal of Engineering, Vol. 2013, 2013, pp. 1-9.
[31] Jacobs R. A., “Increased Rates of Convergence Through Learning Rate Adaptation”, Neural Network, Vol. 1, 1988, pp. 295-307.
[32] Demuth, H., Beale, M., “Matlab Neural Networks Toolbox”, User’s Guide. Copyright 1992-2001, The Math Works, Inc., See also URL http://www.mathworks.com.
[33] Zhang, H., Wei, W., and Mingchen, Y., “Boundedness and Convergence of Batch Back-Propagation Algorithm with Penalty for Feedforward Neural Networks”, Neurocomputing, Vol. 89, 2012, pp. 141-146.