Experimental Study of the Effect of Impeller Geometrical Parameters on Fluid Hydrodynamics in Copper Solvent Extraction Mixer
Subject Areas : Mechanical EngineeringS. Parvizi 1 , S. Aosati 2 , E. Keshavarz Alamdari 3
1 - Assistant Professor, Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU)
2 - MSc, Department of Mining and Metallurgical Engineering, AmairKabir University of Technology (Tehran Polytechnic)
3 - Associate Professor, Department of Mining and Metallurgical Engineering, AmairKabir University of Technology (Tehran Polytechnic)
Keywords:
Abstract :
[1] Kraume, M., Gäbler, A., and Schulze, K., “Influence of Physical Properties on Drop Size Distribution of Stirred Liquid‐Liquid Dispersions”, Chemical Engineering & Technology, Vol. 27, 2004, pp. 330-334.
[2] Mersmann, A., “Fluid Dynamics of Fluid Two Phase Systems”, In Preprints 5th International Congress of Chemical Engineering, CHUSA 75, Prague, Czech-Republic, 1975.
[3] Shabani, M. O., Mazahery, A., “Computational Fluid Dynamics (CFD) Simulation of Liquid-Liquid Mixing in Mixer-Settler”, Archive of Metallurgy and Materials, Vol. 57, 2012, pp. 173-178.
[4] Parvizi, S., Keshavarz Alamdari, E., Hashemabadi, S. H., Kavousi, M., and Sattari, A., “Investigating Factors Affecting on the Efficiency of Dynamic Mixers”, Mineral Processing and Extractive Metallurgy Review, Vol. 37, 2016, pp. 342-368.
[5] Paul, E. L., Atiemo-Obeng, V. A., Kresta, and S. M., Handbook of Industrial Mixing: Science and Practice, John Wiley & Sons, 2004.
[6] Shabani, M. O., Alizade, M., and Mazahery, A., “Fluid Flow Characterization of Liquid-Liquid Mixing in Mixer-Settler”, Engineering with Computers, Vol. 27, 2011, pp. 373-379.
[7] Abu-Farah, L., Al-Qaessi, F., and Schonbucher, A., “Cyclohexan /Water Dispersion Behavior in Stirred Batch Vessel Experimentally and with CFD Simulation”, Procedia Computer Science, Vol. 1, 2012, pp. 655-664.
[8] Zhao, Y. C., Li, X. Y., Chen, J. C., Yang, C., and Mao, Z. S., “Experimentl Study on Liquid-Liquid MAcro-Mixing in a Stirred Tank”, Industrial Engineering Chemical Research, Vol. 50, No. 10, 2011, pp. 5952-5958.
[9] Rewatkar, V., Joshi, J., “Effect of Impeller Design on Liquid Phase Mixing in Mechanically Agitated Reactors”, Chemical Engineering Communication, Vol. 102, 1991, pp. 1-33.
[10] Pandit, A., Joshi, J., “Mixing in Mechanically Agitated Gas-Liquid Contactors, Bubble Columns and Modified Bubble Columns”, Chemical Engineering Science, Vol. 38, 1983, pp. 1189-1215.
[11] Raghav Rao, K., Joshi, J., “Liquid Phase Mixing in Mechanically Agitated Vessels”, Chemical Engineering Communications, Vol. 74, 1988, pp. 1-25.
[12] Zhou, G., Kresta, S. M., “Impact of Tank Geometry on the Maximum Turbulence Energy Dissipation Rate for Impellers”, AICHE J., Vol. 42, 1996, pp. 2476-2490.
[13] Cheng, D., Feng, X., Cheng, J. C., and Yang, C., “Numerical Simulation of Macro Mixing in Liquid-Liquid Stirred Tank”, Chemical Engineering Science, Vol. 101, 2013, pp. 272-282.
[14] Jaworski, Z., Nienow, A., and Dyster, K., “An LDA Study of the Turbulent Flow Field in a Baffled Vessel Agitated by an Axial, Down‐Pumping Hydrofoil Pmpeller”, The Canadian Journal of Chemical Engineering, Vol. 74, 1996, pp. 3-15.
[15] Mavros, P., Xuereb, C., and Bertrand, J., “Determination of 3-D Flow Fields in Agitated Vessels by Laser-Doppler Velocimetry: use and Interpretation of RMS Velocities”, Chemical Engineering Research Design, Vol. 76, 1998, pp. 223-233.
[16] Shabani, M., Mazahery, A., “Evaluation of the Effect of Mixer Settler Baffles on Liquid-Liquid Extraction Via CFD Simulation”, UPB Sci Bull Ser D, Vol. 73, 2011, pp. 55-64.
[17] Brůha, O., Brůha, T., Fořt, I., and Jahoda, M., “Dynamics of the Flow Pattern in a Baffled Mixing Vessel with an Axial Impeller”, Acta Polytechnica, Vol. 47, 2007, pp. 17-26.
Fradette, L., Thomé, G., Tanguy, P. A., and Takenaka, K., “Power and Mixing Time Study Involving a Maxblend Impeller with Viscous Newtonian and Non-Newtonian Fluids”, Chemical Engineering Research Design, Vol. 85, 2007, pp. 1514-1523.