Investigation on Stress Distribution of Functionally Graded Nanocomposite Cylinders Reinforced by Carbon Nanotubes in Thermal Environment
Subject Areas : Mechanical EngineeringMohammad morad Sheikhi 1 , Hamidreza Shamsolhoseinian 2 , Rasool Moradi dastjerdi 3
1 - Department of Mechanical Engineering,
Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran
2 - Department of Mechanical Engineering,
Shahid Rajaee Teacher Training University (SRTTU), Tehran, Iran
3 - Young Researchers and Elite Club,
Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
Keywords:
Abstract :
[1] Iijima, S., “Helical microtubules of graphitic carbon”, Nature, Vol. 354, 1991, pp. 56–8.
[2] Wagner, H. D., Lourie, O., Feldman, Y., and Tenne, R., “Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix”, Applied Physics Letters, Vol. 72, 1997, pp. 188–90.
[3] Griebel, M., Hamaekers, J., “Molecular dynamic simulations of the elastic moduli of polymer-carbon nanotube composites”, Computer Methods in Applied Mechanics and Engineering, Vol. 193, 2004, pp. 1773–88.
[4] Song, Y. S., Youn, J. R., “Modeling of effective elastic properties for polymer based carbon nanotube composites”, Polymer, Vol. 47, 2006, pp. 1741–8.
[5] Han, Y., Elliott, J., “Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites”, Computational Materials Science, Vol. 39, 2007, pp. 315–23.
[6] Zhu, R., Pan, E., and Roy, A. K., “Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites”, Materials Science and Engineering A, Vol. 447, 2007, pp. 51–7.
[7] Manchado, M. A. L., Valentini, L., Biagiotti, J., and Kenny, J. M., “Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing”, Carbon, Vol. 43, 2005, pp. 1499–505.
[8] Qian D., Dickey E. C., Andrews R., and Rantell T., “Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites”, Applied Physics Letters, Vol. 76, 2000, pp. 2868–70.
[9] Berber S., Kwon Y. K., Tomanek D. “Unusually high thermal conductivity of carbon nanotubes”, Phys Rev Lett Vol. 84, 2000, pp. 4613–6.
[10] Hong W. T. Tai N. H., “Investigations on the thermal conductivity of composites reinforced with carbon nanotubes”, Diamond Relat Mater, Vol. 17, 2008, pp. 1577–81.
[11] Liu. T. T, Wang. X., “Dynamic elastic modulus of single-walled carbon nanotubes in different thermal environments”, Physics Letters A, Vol. 365, 2007, pp. 144–148.
[12] Meguid S. A., Sun Y. “On the tensile and shear strength of nano-reinforced composite interfaces”, Materials and Design, Vol. 25, 2004, pp. 289–96.
[13] Shen H. S., “Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells”, Composite Structures, Vol. 93, 2011, pp. 2096–108.
[14] Shen, H. S., Zhang, C. L., “Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates”, Materials and Design, Vol. 31, 2010, pp. 3403–11.
[15] Lei, Z. X., Liew, K. M., and Yu, J. L., “Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment”, Composite Structures,Vol. 106,2013, pp. 128–138.
[16] Lei, Z. X., Liew, K. M., and Yu, J. L., “Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method”, Composite Structures,Vol. 98, 2013, pp. 160–168.
[17] Heshmati, M., Yas, M. H., “Dynamic analysis of functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams subjected to multi-moving loads”, Materials & Design, Vol. 49, 2013, pp. 894-904.
[18] Alibeigloo, A., “Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity”, European Journal of Mechanics-A/Solids, Vol. 44, 2014, pp. 104-115.
[19] Alibeigloo, A., Liew, K. M., “Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity”, Composite Structures,Vol. 106, 2013, pp. 873–881.
[20] Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A., and Sotoudeh-Bahreini R., “Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method”, Journal of Reinforced Plastic and Composites, Vol. 32, 2013, pp. 593-601.
[21] Moradi-Dastjerdi, R., Foroutan, M., and Pourasghar, A., “Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method”, Materials and Design, Vol. 44, 2013, pp. 256-66.
[22] Moradi-Dastjerdi, R., Sheikhi, M. M., and Shamsolhoseinian, H. R., “Stress Distribution in Functionally Graded Nanocomposite Cylinders Reinforced by Wavy Carbon Nanotube”, Int J of Advanced Design and Manufacturing Technology, Vol. 7, 2014, pp. 43-54.
[23] Jam, J. E., Kiani, Y., “Buckling of pressurized functionally graded carbon nanotube reinforced conical shells”, Composite Structures, Vol. 125, 2015, pp. 586-595.
[24] Mirzaei, M., Kiani, Y., “Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells”, Aerospace Science and Technology, Vol. 47, 2015, pp. 42-53.
[25] Mirzaei, M., Kiani, Y., “Thermal buckling of temperature dependent FG-CNT reinforced composite plates”, Meccanica, 2015, DOI: 10.1007/s11012-015-0348-0.
[26] Mirzaei, M., Kiani, Y., “Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets”, Composite Structures, Vol. 134, 2015, pp. 1004-1013.
[27] Jam, J. E., Kiani, Y., “Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment”, Composite Structures, Vol. 132, 2015, pp. 35-43.
[28] Shen H. S., “Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments,” Composite Structures, Vol. 91, 2009, pp. 9–19
[29] Li, X. F., Peng, X. L., “A pressurized functionally graded hollow cylinder with arbitrarily varying material properties”, Journal Elasticity, Vol. 96, 2009, pp. 81–95.
[30] Hetnarski, R. B., Eslami M. R., “Thermal Stresses–Advanced Theory and Applications”, Springer, Solid Mechanics and its applications, 2009, Chaps. 4.