A New Method for Measuring Perforated Surface by Coordinate Measuring Machine (CMM)
Subject Areas : Mechanical Engineering
1 - Research Institute of Petroleum Industry (RIPI),
Keywords:
Abstract :
[1] Haji M., “Why Portable CMM?”, Manuf. Eng. J., (In Persian) Vol. 4, No. 17, 2007, P.22-28.
[2] Kamrani AK, Nasr EA Reverse, Engineering: A Review & Evaluation of Non-Contact Based Systems, Rapid Prototyping: Theory and Practice, Springer, New York, 2006, Chaps. 7, pp.35.
[3] Bazmi F., “CMMs and Laser Probes”, Manu. Eng. J., Vol.5, No. 20, 2007, P.34-41.
[4] Ye Li, Naveen P., S. Joseph, “Measuring External Profiles of Porous Objects Using CMM”, Int. J. Adv. Manuf. Technol., Vo1. 5, No. 3, 2012, pp.12-20, DOI 10.1007/s00170-012-4010-x.
[5] Lu CG, Morton D, Wu MH, Myler P, “Genetic Algorithm Modeling and Solution of Inspection Path Planning on a Coordinate Measuring Machine (CMM).“ Int. J. Adv. Manuf Tech, Vol. 15, No. 3, 1999, pp. 409–416.
[6] Albuquerque V., Liou F., Mitchell O., “Inspection Point Placement and Path Planning Algorithms for Automatic CMM Inspection”, Int. J. Computer Integrated Manuf. Vol. 13, No. 2, 2000, pp. 107–120.
[7] Zussman E, Schuler H, Seliger G, “Analysis of the Geometrical Feature Detectability Constraints for Laser-Scanner Sensor Planning”, Int. J Adv Manuf. Tech, Vol. 9, No. 6, 1994, pp.56–64.
[8] Xi F., Shu C, “CAD-Based Path Planning for 3-D Line Laser Scanning”, Computer Aided Des. Vol. 31, No. 14, 1999, pp. 473–479.
[9] Chiang Y., Chen F. L., “CMM Probing Accessibility in a Single Slot”, Int. J. Adv. Manuf. Tech., Vol. 15, No. 2, 1999, pp.261–267.
[10] Huan-Chung C., Tsann-Rong L., “A Novel Reverse Measurement and Manufacturing of Conjugate Cams in a Diesel Engine”, Int. J. Adv. Manuf. Tech., Vol. 26, No.4, 2005, pp.41–46.
[11] Bradley C., Chan V., “A complementary Sensor Approach to Reverse Engineering”, J. Manuf. Sci. Eng. Trans, Vol. 123, No. 5, (2001), pp.74–81.
[12] Mohib A., Azab A., ElMaraghy H., “Feature-Based Hybrid Inspection Planning: a Mathematical Programming Approach”, Int. J. Comp. Integrated Manuf. Vol. 22, No.1, 2009, pp.13–29.
[13] Frank M., Hunt C., Anderson D., McKinley T., Brown T., “Maintenance of Surface Porosity When Using Subtractive Rapid Prototyping for Bone Replacement”, 55th Annual Meeting of the Orthopaedic Research Society, Las Vegas, NV, 2009.
[14] Kim JY, Park E., Kim S., Shin J., Cho D., “Fabrication of a SFF-based Three-Dimensional Scaffold Using a Precision Deposition System in Tissue Engineering”, J. Micro. Mech. Micro. eng. Vol. 18., No. 5, 2008, pp.55-68.
[15] Lam C., Mo X.., Teoh S., Hutmacher D., “Development Using 3D Printing With a Starch-based Polymer”, Mater Sci. Eng. C., Vol. 20, No. 1-2, 2002, pp: 49–56.
[16] Li Y., Gu P., “Free-Form Surface Inspection Techniques State of the art Review”, Computer Aided Des., Vol.36, No. 13, 2004, pp.1395–1417.
[17] Zhao F., Xu X., Xie S., “Computer-Aided Inspection Planning—the State of the art.”, Computer Industry, Vol. 60, No. 7, 2009, pp.453–466.
[18] Chiang Y., Chen F., “Sculptured Surface Reconstruction From CMM Measurement Data by a Software Iterative Approach”, Int. J. Prod. Res., Vol. 37, No.8, 1999, pp.1679–1695.