Pareto Optimum Design of Heat Exchangers based on the Imperialist Competitive Algorithm: A Case Study
Subject Areas : optimization and simulationMohammadjavad Mahmoodabadi 1 , Soodeh Zarnegar 2
1 - Department of Mechanical Engineering,
Sirjan University of Technology, Sirjan, Iran
2 - Department of Mechanical Engineering,
Sirjan University of Technology, Sirjan, Iran
Keywords:
Abstract :
[1] Costa, L. H., Queiroz, M., Design Optimization of Shell-and-Tube Heat Exchangers, Applied Thermal Engineering, Vol. 28, 2008, pp. 1798-1805.
[2] Ramananda Rao, K., Shrinivasa, U., and Srinivasan, J., Synthesis of Cost Optimal Shell and Tube Heat Exchangers, Heat Transfer Engineering, Vol. 12, No. 3, 1991, pp. 47-55.
[3] Ponce-Ortega, J. M., Serna-Gonzalez, M., Salcedo-Estrada, L. I., and Jimenez-Gutierrez, A., Minimum-Investment Design of Multiple Shell and Tube Heat Exchangers Using a MINLP Formulation, Chemical Engineering Research and Design, Vol. 84, No. 10, 2006, pp. 905-910.
[4] Ponce-Ortega, J. M., Serna-Gonzalez, M., and Jimenez-Gutierrez, A., Use of Genetic Algorithms for the Optimal Design of Shell-and-Tube Heat Exchangers, Applied Thermal Engineering, Vol. 29, 2009, pp. 203-209.
[5] Agarwal, A., Gupta, S. K., Jumping Gene Adaptations of NSGA-II and their Use in the Multi-Objective Optimal Design of Shell and Tube Heat Exchangers, Chemical Engineering Research and Design, Vol. 86, 2008, pp. 123-139.
[6] Sanaye, S., Hajabdollahi, H., Multi-Objective Optimization of Shell and Tube Heat Exchangers”, Applied Thermal Engineering, Vol. 30, 2010, pp. 1937-1945.
[7] Taborek, J., Industrial Heat Exchanger Design Practices, Wiley, New York, 1991.
[8] Kakac, S., Liu, H., Heat Exchangers Selection Rating, and Thermal Design, CRC Press, New York, 2000.
[9] Shah, R. K., Sekulic, P., Fundamental of Heat Exchanger Design, John Wiley & Sons, 2003.
[10] Taal, M., Bulatov, I., Klemes, J., and Stehlik, P., Cost Estimation and Energy Price Forecasts for Economic Evaluation of Retrofit Projects, Applied Thermal Engineering, Vol. 23, 2003, pp. 1819-1835.
[11] Caputo, A. C., Pelagagge, P. M., and Salini, P., Heat Exchanger Design based on Economic Optimization, Applied Thermal Engineering, Vol. 28, 2008, pp. 1151-1159.
[12] Atashpaz-Gargari, E., Lucas, C., Imperialist Competitive Algorithm: an Algorithm for Optimization Inspired by Imperialistic Competition, IEEE Congress on Evolutionary Computation, 2007, pp. 4661–4666.
[13] Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R., Rezaie, K., and Atashpaz-Gargari, E., Solving the Integrated Product Mix-Outsourcing Problem by a Novel Meta-Heuristic Algorithm: Imperialist Competitive Algorithm, Expert Systems with Applications, Vol. 37, No. 12, 2010, pp. 7615–7626.
[14] Mahmoodabadi, M. J., Taherkhorsandi, M., and Talebipour, M., Adaptive Robust PID Sliding Control of a Liquid Level System based on Multi-Objective Genetic Algorithm Optimization, Journal of Control and Cybernetics, Vol. 46, No. 3, 2017, pp. 227-246.
[15] Mahmoodabadi, M. J., Nemati, A. R., A Novel Adaptive Genetic Algorithm for Global Optimization of Mathematical Test Functions and Real-world Problems, Engineering Science and Technology, an International Journal, Vol. 19, No. 4, 2016, pp. 2002-2021.
[16] Mahmoodabadi, M. J., Taherkhorsandi, M., Optimal Robust Design of Sliding-mode Control based on Multi-Objective Particle Swarm Optimization for Chaotic Uncertain Problems, International Journal of Advanced Design and Manufacturing Technology, Vol. 10, No. 3, 2017, pp. 115-126.
[17] Farokhi, A., Mahmoodabadi, M. J., Optimal Fuzzy Inverse Dynamics Control of a Parallelogram Mechanism based on a New Multi-Objective PSO, Cogent Engineering, Vol. 5, No. 1, 2018, pp. 1-20.
[18] Atashpaz-Gargari, E., Rajabioun, R., Hashemzadeh, F., and Salmasi, F. R., A Decentralized PID Controller based on Optimal Shrinkage of Gershgorin Bands and PID Tuning Using Colonial Competitive Algorithm, International Journal of Innovative Computing, Information and Control, Vol. 5, 2009, pp. 3227–3240.
[19] Sepehri Rad, H., Lucas, C., Application of Imperialistic Competition Algorithm in Recommender Systems, In Proceedings of the 13th Int'l CSI Computer Conference, Kish Island, Iran, 2008.
[20] Jasour, A., Atashpaz-Gargari, E., and Lucas, C., Vehicle Fuzzy Controller Design Using Imperialist Competitive Algorithm, Second Iranian Joint Congress on Fuzzy and Intelligent Systems, Mashhad, Iran, 2008.
[21] Khabbazi, A., Atashpaz-Gargari, E., and Lucas, C., Imperialist Competitive Algorithm for Minimum Bit Error Rate Beam Forming, International Journal of Bio-Inspired Computation, Vol. 1, 2009, pp. 125–133.
[22] Alikhani Koupaei, J., Abdechiri, M., An Optimization Problem for Evaluation of Image Segmentation Methods, International Journal of Computer and Network Security, Vol. 2, No. 6, 2010, pp. 142-149.
[23] Sayadnavard, M. H., Haghighat, A. T., and Abdechiri, M., Wireless Sensor Network Localization Using Imperialist Competitive Algorithm, 3rd IEEE International Conference on Computer Science and Information Technology, 2010.
[24] Jolai, F., Sangari, M., and Babaie, M., Pareto Simulated Annealing and Colonial Competitive Algorithm to Solve an Offline Scheduling Problem with Rejection, Journal of Engineering Manufacture, Vol. 224, No. 7, 2010, pp. 1119–1131.
[25] Shokrollahpour, E., Zandieh, M., and Dorri, B., A Novel Imperialist Competitive Algorithm for Bi-Criteria Scheduling of the Assembly Flowshop Problem, International Journal of Production Research, Vol. 49, No. 11, 2011, pp. 3087-3103.
[26] Forouharfard, S., Zandieh, M., An Imperialist Competitive Algorithm to Schedule of Receiving and Shipping Trucks in Cross-Docking Systems, International Journal of Advanced Manufacturing Technology, Vol. 51, No. 9, 2010, pp. 1179-1193.
[27] Karimi, N., Zandieh, M., and Najafi, A. A., Group Scheduling in Flexible Flow Shops: A Hybridised Approach of Imperialist Competitive Algorithm and Electromagnetic-Like Mechanism, International Journal of Production Research, Vol. 49, No. 16, 2011, 4965-4977.
[28] Bagher, M., Zandieh, M., and Farsijani, H., “Balancing of Stochastic U-Type Assembly Lines: an Imperialist Competitive Algorithm, International Journal of Advanced Manufacturing Technology, Vol. 54, No. 1, 2010, pp. 271-285.
[29] Sarayloo, F., Tavakkoli-Moghaddam, R., Imperialistic Competitive Algorithm for Solving a Dynamic Cell Formation Problem with Production Planning, Advanced Intelligent Computing Theories and Applications, Lecture Notes in Computer Science, Vol. 6215, 2010, pp. 266–276.
[30] Piroozfard, H., Wong, K. Y., An Imperialist Competitive Algorithm for the Job Shop Scheduling Problems, IEEE International Conference on Industrial Engineering and Engineering Management, (IEEM), 2014, pp. 69–73.
[31] Biabangard-Oskouyi, A., Atashpaz-Gargari, E., Soltani, N., and Lucas, C., Application of Imperialist Competitive Algorithm for Material Properties Characterization from Sharp Indentation Test, International Journal of Engineering Simulation, Vol. 10, No. 1, 2009, pp. 1-8.
[32] Yousefi, M., Mohammadi, H., Second Law Based Optimization of a Plate Fin Heat Exchanger Using Imperialist Competitive Algorithm, International Journal of the Physical Sciences, Vol. 6, No. 20, 2011, pp. 4749–4759.
[33] Mousavi Rad, S. J., Akhlaghian Tab, F., and Mollazade, K., Application of Imperialist Competition Algorithm for Feature Selection: a Case Study on Rice Classification, International Journal of Computer Application, Vol. 40, No. 16, 2012, pp. 41-48.
[34] Lucas, C., Nasiri-Gheidari, Z., and Tootoonchian, F., Application of an Imperialist Competitive Algorithm to the Design of a Linear Induction Motor, Energy Conversion and Management, Vol. 51, No. 7, 2010, pp. 1407–1411.
[35] Movahhedi, O., Salmasi, F. R., Optimal Design of Propulsion System with Adaptive Fuzzy Controller for a PHEV based on Non-Dominated Sorting Genetic and Colonial Competitive Algorithms International Review of Automatic Control, Vol. 2, No. 4, 2009, pp. 445–451.
[36] Niknam, T., Taherian Fard, E., Pourjafarian, N., and Rousta, A., An Efficient Hybrid Algorithm based on Modified Imperialist Competitive Algorithm and K-Means for Data Clustering, Engineering Applications of Artificial Intelligence, Vol. 24, No. 2, 2011 pp. 306–317.
[37] Mozafari, H., Abdi, B., and Ayob, A., Optimization of Transmission Conditions for Thin Interphase Layer Based on Imperialist Competitive Algorithm, International Journal on Computer Science and Engineering, Vol. 2, No. 7, 2010, pp. 2486–2490.
[38] Arora, J. S., Introduction to Optimum Design, Fourth Edition, Academic Press.
[39] Mahmoodabadi, M. J., Taherkhorsandi, M., and Bagheri, A., Optimal Robust Sliding Mode Tracking Control of a Biped Robot based on Ingenious Multi-objective PSO, Neurocomputing, Vol. 124, 2014, pp. 194–209.
[40] Bisheban, M., Mahmoodabadi, M. J., Pareto Optimal Design of Decoupled Sliding Mode Control based on a New Multi-Objective Particle Swarm Optimization Algorithm, Amirkabir International Journal of Science & Research (Modeling, Identification, Simulation & Control), Vol. 45, No. 2, 2013, pp. 31- 40.