Geometrical Effects of Duct on the Entropy Generation in the Laminar Forced Convection Separated Flow
Subject Areas : Mechanical EngineeringNasrin Aminzadeh 1 , Shima Sotoodehnia 2 , Meysam Atashafrooz 3
1 - Department of Mechanical Engineering,
Sirjan University of Technology, Sirjan, Iran
2 - Sirjan Branch. Islamic Azad University, Sirjan, Iran.
3 - Department of Mechanical Engineering,
Sirjan University of Technology, Sirjan, Iran
Keywords:
Abstract :
[1] Tylli, N., Kaiktsis L., and Ineichen, B., Side Wall Effects in Flow Over Backward-Facing Step: Experiments and Numerical Solutions, Physics Fluids, Vol. 14, No. 11, 2002, pp. 3835-3845.
[2] Erturk, E., Numerical Solutions of 2-D Steady Incompressible Flow over a Backward-facing Step, Part I: High Reynolds Number Solutions, Computers & Fluids, Vol. 37, No. 6, 2008, pp. 633–655.
[3] Abu-Mulaweh, H. I., A Review of Research on Laminar Mixed Convection Flow over Backward and Forward-facing Steps, International Journal of Thermal Sciences, Vol. 42, No. 9, 2003, pp. 897-909.
[4] Armaly, B. F., Li, A., and Nie, J. H., Measurements in Three-Dimensional Laminar Separated Flow, International Journal of Heat and Mass Transfer, Vol. 46, No. 19, 2003, pp. 3573–3582.
[5] Atashafrooz, M., Gandjalikhan Nassab, S. A., and Lari, K., Coupled Thermal Radiation and Mixed Convection Step Flow of Non-gray Gas, Journal of Heat Transfer (ASME), Vol. 138, No. 7, 2016, 072701–9.
[6] Selimefendigil, F., Oztop, H. F., Numerical Analysis of Laminar Pulsating Flow at a Backward Facing Step with an Upper Wall Mounted Adiabatic Thin Fin, Computers & Fluids, Vol. 88, 2013, pp. 93-107.
[7] Atashafrooz, M., Gandjalikhan Nassab, S. A., and Lari, K., Numerical Analysis of Interaction Between Non-gray Radiation and Forced Convection Flow over a Recess Using the Full-Spectrum K-Distribution Method, Heat and Mass Transfer, Vol. 52, No. 2, 2016, pp. 361-377.
[8] Brakely, D., Gabriela, M., Gomes M., and Henderson, R. D., Three-Dimensional Instability in Flow Over a Backward- Facing Step, Journal of Fluid Mechanics, Vol. 473, 2002, pp. 167-190.
[9] Nie, J. H., Armaly, B. F., Three-Dimensional Convective Flow Adjacent to Backward-Facing Step - Effects of Step Height, International Journal of Heat and Mass Transfer, Vol. 45, No. 12, 2002, pp. 2431–2438.
[10] Atashafrooz, M., Gandjalikhan Nassab, S. A., and Lari, K., Numerical study of Coupled Non-Gray Radiation and Separation Convection Flow in a Duct Using the FSK Method, International Journal of Advanced Design and Manufacturing Technology, Vol. 9, No. 4, 2016, pp. 23-38.
[11] Nie, J. H., Chen Y. T., and Hsieh, H. T., Effects of a Baffle on Separated Convection Flow Adjacent to Backward-Facing Step. International Journal Thermal Science, Vol. 48, 2009, pp. 618–625.
[12] Tsay, Y. L., Chang, T. S., and Cheng, J. C., Heat Transfer Enhancement of Backward-facing Step Flow in a Channel by Using Baffle Installation on Channel Wall, Acta Mechanica, Vol. 174, 2005, pp. 63–76.
[13] Oztop, H. F., Mushatet, K. S., and Yılmaz, I˙., Analysis of Turbulent Flow and Heat Transfer over a Double Forward Facing Step with Obstacles, International Communications in Heat and Mass Transfer, Vol. 39, No. 9, 2012, pp. 1395–1403.
[14] Chen, Y. T., Nie, J. H., Hsieh, H. T., and Sun, L. J., Three-Dimensional Convection Flow Adjacent to Inclined Backward-Facing Step, International Journal Heat Mass Transfer, Vol. 49, 2006, pp. 4795–4803.
[15] Patankar, S. V., Numerical Heat Transfer and Fluid Flow. Taylor & Francis, Philadelphia, Penn., USA, Chap. 7, 1981,
[16] Lari, K., Gandjalikhan Nassab, S. A., Analysis of Combined Radiative and Conductive Heat Transfer in Three-Dimensional Complex Geometries Using Blocked-off Method, Transactions of Mechanical Engineering, Vol. 35, M2, 2011, pp. 107-119.
[17] Atashafrooz, M., Gandjalikhan Nassab, S. A., Numerical Analysis of Laminar Forced Convection Recess Flow with Two Inclined Steps Considering Gas Radiation Effect, Computers & Fluids, Vol. 66, 2012, pp. 167-176.
[18] Atashafrooz, M., Gandjalikhan Nassab, S. A., Simulation of Three-Dimensional Laminar Forced Convection Flow of a Radiating Gas over an Inclined Backward-facing Step in a Duct under Bleeding Condition, Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, Vol. 227, No. 2, 2012, pp. 332-345.
[19] Atashafrooz, M., Gandjalikhan Nassab, S. A., and Sadat Behineh, E., Effects of Baffle on Separated Convection Step Flow of Radiating Gas in a Duct, International Journal of Advanced Design and Manufacturing Technology, Vol. 8, No. 3, Sep. 2015, pp. 33-47.
[20] Byun, D. Y., Beak, S. W., and Kim, M. Y., Investigation of Radiative Heat Transfer in Complex Geometries Using Blocked-off, Multiblock and Embedded Boundary Treatments. Numerical Heat Transfer, Part A: Applications, International Journal of Computation and Methodology, Vol. 43, No. 8, 2003, pp. 807-825.
[21] Bahaidarah, H. M. S., Sahin, A. Z., Thermodynamic Analysis of Fluid Flow in Channels with Wavy Sinusoidal Walls, Thermal Science, Vol. 17, No. 3, 2013, pp. 813-822.
[22] Ko, T. H., Ting, K., Entropy Generation and Optical Analysis for Laminar Forced Convection in Curved Rectangular Ducts: A Numerical Study, International Journal of Thermal Sciences, Vol. 45, No. 2, 2006, pp. 138–150.
[23] Mohaghegh, M. R., Esfahani, J. A., Entropy Generation Analysis of Free Convection from a Constant Temperature Vertical Plate using Similarity Solution, Thermal Science, Vol. 20, No. 6, 2016, pp. 1855-1866.
[24] Kolsi, L., Abidi, A., Borjini, M., and Aissia H. B., The Effect of an External Magnetic Field on the Entropy Generation in Three-Dimensional Natural Convection, Thermal Science, Vol. 14, No. 2, 2010, pp. 341-352.
[25] Mamourian, M., Shirvan, K. M., Ellahi, R., and Rahimi, A. B., Optimization of Mixed Convection Heat Transfer with Entropy Generation in a Wavy Surface Square Lid-Driven Cavity by Means of Taguchi Approach, International Journal of Heat and Mass Transfer, Vol. 102, 2016, pp. 544-554.
[26] Oztop, H. F., Kolsi, L., Alghamdi, A., Abu-Hamdeh, N., Borjini, M. N., and Aissia, H. B., Numerical Analysis of Entropy Generation due to Natural Convection in Three-Dimensional Partially Open Enclosures, Journal of the Taiwan Institute of Chemical Engineers, Vol. 75, 2017, pp. 131-140.
[27] Abu-Nada, E., Investigation of Entropy Generation over a Backward Facing Step under Bleeding Conditions, Energy Conversion and Management, Vol. 49, No. 11, 2008, pp. 3237-3242.
[28] Abu-Nada, E., Numerical Prediction of Entropy Generation in Separated Flows, Entropy, Vol. 7, No. 4, 2005, pp. 234-252.
[29] Atashafrooz, M., Gandjalikhan Nassab, S. A., and Ansari, A. B., Numerical Study of Entropy Generation in Laminar Forced Convection Flow over Inclined Backward and Forward Facing Steps in a Duct, International Review of Mechanical Engineering, Vol. 5, No. 5, 2011, pp. 898-907.
[30] Atashafrooz, M., Gandjalikhan Nassab, S. A., and Ansari, A. B., Numerical Investigation of Entropy Generation in Laminar Forced Convection Flow over Inclined Backward and Forward Facing Steps in a Duct under Bleeding Condition, Thermal Science, Vol. 18, No. 2, 2014, pp. 479-492.
[31] Bahrami, A., Gandjalikhan Nassab, S. A., Study of Entropy Generation in Laminar Forced Convection Flow over a Forward-facing Step in a Duct, International Review of Mechanical Engineering, Vol. 4, No. 4, 2010, pp. 399-404.
[32] Patankar, S. V., Spalding, D. B., A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, International Journal of Heat and Mass Transfer, Vol. 15, No.10, 1972, pp. 1787–1806.