Effect of Ethylene Diamine Tetra Acetic Acids on Morphological Characteristics and Phytoremediation Capacity of Indian mustard (brassica juncea L) in Nickel Contaminated Soil
Subject Areas : soil pollutionMansoureh Tashakori zadeh 1 , Mostafa Alizadeh 2
1 - Faculty of Agriculture and Natural Resources, Payame Noor University (PNU), Tehran, I.R. Iran. *(Corresponding author)
2 - MSc of tectonic, Azad University, Kerman, I.R. Iran
Keywords: Soil pollution, Phytoextraction, Brassica juncea L, Morphological characteristics, EDTA,
Abstract :
Contaminated soil with heavy metal is one of the most important environmental issues in the world. The refining plant is one of the methods of refinement and prevent potential pollution hazards of heavy metals in soil. The purpose of this study, effects of various concentrations of EDTA on some morphological characteristics and the efficiency of EDTA for Increased Ni from soil and to compare their effects for enhancing of Ni extraction with Indian mustard (brassica juncea L). For this purpose, a greenhouse experiment was conducted in completely randomized design with four replications. Soil samples were mixed with 600 mg/kg of nickel sulfate and the seeds were planted in soil of pot. The experimental factor was including 0, 1, 5, 10 and 12 mmol EDTA that after the seed cultivation have been added to the soil. The results of the research showed that The application of different EDTA concentrations decreased morphological characteristics and increased soluble nickel concentrations in soil and transfer it to the inside of the plant and this changes was significant compared to the control treatment. The increase in soluble nickel concentrations in soil and transfer it to the inside of the plant inhibits the absorption of essential elements to the plants shoot and thus, repelled the growing process. In general, Indian mustard (brassica juncea L) due to high nickel resistance can be introduced as a Ni hyper accumulator to EDTA induced phytoextraction technology. But according to the preventive effects of these substances on the growth of the plant should be used for low concentrations.
1- Megateli, S., Semsari, S., Couderchet, M., 2009. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicology and Environmental Safety, vol. 72 (6), pp. 1774-1780.
2- Yang, X.E., Long, X.X., Ye, H.B., He, Z.L., Calvert, D.V., Stoffella, P.J., 2004. Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii hence). J Plant Soil, vol. 259, pp. 181-189.
3- Baycu, G., Doganay, T., Hakan, O., Sureyya, G., 2006. Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees. Istanbul Environmental Pollution, vol. 143, pp. 545-554.
4- Poulik, Z., 1999. Influence of nickel contaminated soils on lettuce and tomatoes. Scientiae Horticultural, vol. 81(3), pp. 243-250.
5- Chen, C., Huang, D., Liu, J., 2009. Functions and toxicity of nickel in plants: recent advances and future prospects. Clean- Soil, Air,Water, vol. 37, pp. 304–313.
6- Sharma, R.K., Madhulika, A., 2005. Biological effects of heavy metals: An overview. Environmental Biology, vol. 26, pp. 301-313.
7- Ahmad, M.S.A., Hussain, M., Ashraf, M., Ahmad, R. Ashraf, M.Y., 2009. Effect of nickel on seed germinability of some elite sunflower (Helianthus annuus L.). Pakistan Botany, vol. 41, pp. 1871–1882.
8- Ali, M.A., Ashraf, M., Athar, H.R., 2009. Influence of nickel stress on growth and some important physiological/ biochemical attributes in some diverse canola (Brassica napusL.) cultivars. Hazardous Materials, vol. 172, pp. 964–969.
9- Panda, S.K., Chaudhury, I., Khan, M.H., 2003. Heavy metal induced lipid peroxidation affects antioxidants in wheat leaves. Biologiae Plantarum, vol. 46(2), pp. 289-294.
10- Mattina, M.J, Lannucci-Berger, W., Musante, C., White, J.C., 2003. Concurrent plant uptake of heavy metal and persistent organic pollutants from soil. J Environ Poll, vol. 124, pp. 375-378.
11- Lombi, e., Zhao, F., Dunham, S., McGrath, P., 2001. Phytoremediation of heavy metal-contaminated soils. J Environ Qual, vol. 30, pp. 1919-1926.
12- Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H.R., Gupta, S.K., Schulin, R., 2000. Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil:the use of NTA and sulfur amendments. Environmental Science and Technology, vol. 34, pp. 1778-1783.
13- Mertens, J., Vervaeke, P., Meers, E., Tack, F.M.G., 2006. Seasonal changes of metals in willow. Stands for phytoremediation on dredged sediment. J Environ Sci Technol, vol. 40, pp. 1962–1968.
14- Al- Barrak, K.M., 2006. Irrigation interval and nitrogen level effects on growth and yield of canola (Brassica napus L.). Scientific Journal of King Faisal University (Basic and Applied Sciences), vol. 7(1), pp. 87-103.
15- Wu, J., Hsu, F., Cunningham, S., 1999. Chelate–assisted Pb phytoextraction: Pb availability, uptake and translocation constrains. Environmental Science and Technology, vol.33, pp. 1898- 1904.
16- Blaylock, M.J., Salt D.E., Dushenkov S., Zakharova O., Gussman C., Kapulink Y., Ensley B.D., Raskin I., 1997. Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environmental Science and Technology, vol.31, pp. 860-865.
17- Luo, C., Z.G. Shen, X. Li., Baker, A.J.M., 2006. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, vol. 63, pp.1773-1784.
18- Shibata, M., Konno, T., Akaike, R., Xu, Y., Shen R.F., Ma, J.F., 2007. Phytoremediation of Pb contaminated soil with polymercoated EDTA. J. Plant Soil, vol. 290, pp.201-208.
19- هاشمی دزفولی، ا، فیزیولوژی گیاهان زراعی تکمیلی، انتشارات دانشگاه شهید چمران اهواز، 1378.
20- Du Laing, G., Tack F.M.G., Verloo, M.G., 2003. Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). J. Anallytic Chimic Acta, vol. 497(8), pp. 191-198.
21- Gupta, P.K. 2000. Soil, Plant, Water and Fertilizer analysis. Agrobios. New Delhi, Indian. P. 438.
22- زرین کفش، منوچهر، خاک شناسی کاربردی، انتشارات و چاپ دانشگاه تهران، ۱۳۷۲ .
23- Nascimento, C.W.A., Amarasiriwardena D., Xing B., 2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. J. Environmental Pollution, vol. 140, pp. 114-123.
24- Turgut, C., Katie, M., Teresa, J.C., 2005. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils. Chemosphere, vol. 58, pp. 1087-1095
25- Yang, X., Baligar, V.C., Martens, D.C., Clark, R.B., 1996. Plant tolerance to Ni toxicity. I. Influx, transport and accumulation of Ni in four species. J. Plant Nutr, vol. 19, pp.73–85.
26- Fuentes, D., Disante, K.B., Valdecantos, A., Cortina, J., Vallejo, V.R., 2006. Response of Pinus halepensismill Seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils. Environmental Pollution, XX PP 1-8.
27- Clemens, S., Palmgren, M.G., Kramer, U., 2002. A long way ahead: understanding and engineering plant metal accumulation. J. Trends in Plant Science, vol. 7, pp. 309-315.
28- Luo, C., Shen, Z., Li, X., 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, vol. 59, pp. 1-11.
29- Nowack, B., Schulin, R., Robinson, B.H., 2006. Critical assessment of chelate-enhanced metal phytoextraction. Environmental Science and Technology, vol. 40, pp. 5225-5232.
30- Chen, Y., Li, X., Shen, Z., 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, vol. 57, pp.187-196.
_||_
1- Megateli, S., Semsari, S., Couderchet, M., 2009. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicology and Environmental Safety, vol. 72 (6), pp. 1774-1780.
2- Yang, X.E., Long, X.X., Ye, H.B., He, Z.L., Calvert, D.V., Stoffella, P.J., 2004. Cadmium tolerance and hyperaccumulation in a new Zn hyperaccumulating plant species (Sedum alfredii hence). J Plant Soil, vol. 259, pp. 181-189.
3- Baycu, G., Doganay, T., Hakan, O., Sureyya, G., 2006. Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees. Istanbul Environmental Pollution, vol. 143, pp. 545-554.
4- Poulik, Z., 1999. Influence of nickel contaminated soils on lettuce and tomatoes. Scientiae Horticultural, vol. 81(3), pp. 243-250.
5- Chen, C., Huang, D., Liu, J., 2009. Functions and toxicity of nickel in plants: recent advances and future prospects. Clean- Soil, Air,Water, vol. 37, pp. 304–313.
6- Sharma, R.K., Madhulika, A., 2005. Biological effects of heavy metals: An overview. Environmental Biology, vol. 26, pp. 301-313.
7- Ahmad, M.S.A., Hussain, M., Ashraf, M., Ahmad, R. Ashraf, M.Y., 2009. Effect of nickel on seed germinability of some elite sunflower (Helianthus annuus L.). Pakistan Botany, vol. 41, pp. 1871–1882.
8- Ali, M.A., Ashraf, M., Athar, H.R., 2009. Influence of nickel stress on growth and some important physiological/ biochemical attributes in some diverse canola (Brassica napusL.) cultivars. Hazardous Materials, vol. 172, pp. 964–969.
9- Panda, S.K., Chaudhury, I., Khan, M.H., 2003. Heavy metal induced lipid peroxidation affects antioxidants in wheat leaves. Biologiae Plantarum, vol. 46(2), pp. 289-294.
10- Mattina, M.J, Lannucci-Berger, W., Musante, C., White, J.C., 2003. Concurrent plant uptake of heavy metal and persistent organic pollutants from soil. J Environ Poll, vol. 124, pp. 375-378.
11- Lombi, e., Zhao, F., Dunham, S., McGrath, P., 2001. Phytoremediation of heavy metal-contaminated soils. J Environ Qual, vol. 30, pp. 1919-1926.
12- Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H.R., Gupta, S.K., Schulin, R., 2000. Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil:the use of NTA and sulfur amendments. Environmental Science and Technology, vol. 34, pp. 1778-1783.
13- Mertens, J., Vervaeke, P., Meers, E., Tack, F.M.G., 2006. Seasonal changes of metals in willow. Stands for phytoremediation on dredged sediment. J Environ Sci Technol, vol. 40, pp. 1962–1968.
14- Al- Barrak, K.M., 2006. Irrigation interval and nitrogen level effects on growth and yield of canola (Brassica napus L.). Scientific Journal of King Faisal University (Basic and Applied Sciences), vol. 7(1), pp. 87-103.
15- Wu, J., Hsu, F., Cunningham, S., 1999. Chelate–assisted Pb phytoextraction: Pb availability, uptake and translocation constrains. Environmental Science and Technology, vol.33, pp. 1898- 1904.
16- Blaylock, M.J., Salt D.E., Dushenkov S., Zakharova O., Gussman C., Kapulink Y., Ensley B.D., Raskin I., 1997. Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environmental Science and Technology, vol.31, pp. 860-865.
17- Luo, C., Z.G. Shen, X. Li., Baker, A.J.M., 2006. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, vol. 63, pp.1773-1784.
18- Shibata, M., Konno, T., Akaike, R., Xu, Y., Shen R.F., Ma, J.F., 2007. Phytoremediation of Pb contaminated soil with polymercoated EDTA. J. Plant Soil, vol. 290, pp.201-208.
19- هاشمی دزفولی، ا، فیزیولوژی گیاهان زراعی تکمیلی، انتشارات دانشگاه شهید چمران اهواز، 1378.
20- Du Laing, G., Tack F.M.G., Verloo, M.G., 2003. Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). J. Anallytic Chimic Acta, vol. 497(8), pp. 191-198.
21- Gupta, P.K. 2000. Soil, Plant, Water and Fertilizer analysis. Agrobios. New Delhi, Indian. P. 438.
22- زرین کفش، منوچهر، خاک شناسی کاربردی، انتشارات و چاپ دانشگاه تهران، ۱۳۷۲ .
23- Nascimento, C.W.A., Amarasiriwardena D., Xing B., 2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. J. Environmental Pollution, vol. 140, pp. 114-123.
24- Turgut, C., Katie, M., Teresa, J.C., 2005. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils. Chemosphere, vol. 58, pp. 1087-1095
25- Yang, X., Baligar, V.C., Martens, D.C., Clark, R.B., 1996. Plant tolerance to Ni toxicity. I. Influx, transport and accumulation of Ni in four species. J. Plant Nutr, vol. 19, pp.73–85.
26- Fuentes, D., Disante, K.B., Valdecantos, A., Cortina, J., Vallejo, V.R., 2006. Response of Pinus halepensismill Seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils. Environmental Pollution, XX PP 1-8.
27- Clemens, S., Palmgren, M.G., Kramer, U., 2002. A long way ahead: understanding and engineering plant metal accumulation. J. Trends in Plant Science, vol. 7, pp. 309-315.
28- Luo, C., Shen, Z., Li, X., 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, vol. 59, pp. 1-11.
29- Nowack, B., Schulin, R., Robinson, B.H., 2006. Critical assessment of chelate-enhanced metal phytoextraction. Environmental Science and Technology, vol. 40, pp. 5225-5232.
30- Chen, Y., Li, X., Shen, Z., 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, vol. 57, pp.187-196.