Site selection of Emergency Accommodation in district 19 of Tehran by using MCDM
Subject Areas : Sustainable Developmentafrasyab kheirdast 1 , seyed ali jozi 2 , Sahar Rezaian 3 , Mahnaz Mirza Ebrahim Tehrani 4
1 - PhD Candidate in Environmental Management, Faculty of Marine Sciences and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Environment, North Tehran Branch, Islamic Azad University, Tehran, Iran. *(Corresponding Author)
3 - Department of Environment Engineering, shahrood Branch, Islamic Azad University, shahrood, Iran.
4 - Department of Environmental Management, Faculty of Marine Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
Keywords: Locating, emergency accommodation, MCDM, 19th district of Tehran.,
Abstract :
Background and Objective: The purpose of this research is providing a suitable model for locating emergency accommodation caused by natural and unnatural disasters in the 19th district of Tehran. Material and Methodology: The research method is descriptive-analytical and data analysis is done using MCDM and Arc GIS and Excel system. The statistical population was selected from among the variables of emergency accommodation location and the sampling method was simple and the sampling volume was obtained using Morgan's table (n = 19). The research tool was a questionnaire that was quantitatively designed and its questions were extracted using emergency accommodation standards and distributed among experts. The validity of the questionnaire was confirmed by experts and its value was 0.421. The reliability of the questionnaire was also calculated using SPSS20 software with Cronbach's alpha coefficient of 0.827. Findings: finding of the present research was considered from 3 main criteria (desirability, compatibility and capacity) and 18 sub-criteria to determine accommodation. In the process of locating emergency accommodation, first, information layers were prepared, then standardization and AHP coefficients were applied to them, and finally, after weighting them, layers were overlapped. Discussion and Conclusions: After the final production of the settlement map and according to the results of this research, 28 zones with a value of 7-9 were accepted for settlement. Also, 17 areas with a value of 7 (relatively good), 7 areas with a value of 8 (good) and 4 areas with a value of 9 (ideal) were identified in the study area for emergency accommodation. In total, 1,321,8725 square meters, equivalent to 1,321 hectares, were habitable in District 19 of Tehran.
1. Zahraee Z, Fatemi A. Sustainable temporary shelter design via lightweight and recyclable materials. Disaster Prev. Manag. Know. 2022; 12 (3) :300-323. URL: http://dpmk.ir/article-1-527-fa.html. (In Persian)
2. Dehghan farouji F, Dehghan A. Disabled people and their vulnerability and challenges in disaster situation-case study: Study of Disability in Tehran City with emphasize on womans. Disaster Prev. Manag. Know. 2021; 11 (1) :9-23. URL: http://dpmk.ir/article-1-379-fa.html.(In Persian)
3. Hayatgheibi Z S, Ghalambordezfooly R. Apply Analysis Hierarchical Process for Site selection of Temporary Housing centers after Disaster (Case study: District 2 of Tehran City). Disaster Prev. Manag. Know. 2021; 11 (4) :401-413. URL: http://dpmk.ir/article-1-447-fa.html.-(In Persian)
4. Mottaki Z, Javidruzi M, Soltany Qalaty F. A planning framework for post-disaster collective shelters. Disaster Prev. Manag. Know. 2020; 10 (3) :251-263. URL: http://dpmk.ir/article-1-354-fa.html. (In Persian)
5. Jamali S, Shahbandarzadeh H, Ghorbanpour A. Application of a Hybrid Approach to Locating Emergency Accommodation Centers in Earthquake Crisis - A Case Study of Bushehr City. Disaster Prev. Manag. Know. 2021; 10 (4) :378-363. URL: http://dpmk.ir/article-1-367-fa.html. (In Persian)
6. hassanpour Kazerouni N, Alavian S M, Tahmasebizadeh F. Analysis of Proportion and Prioritization of Public and Governmental Buildings for the Community Shelters in Eartquake Crisis Using GIS (Case Study: District 5 of Tehran City). Disaster Prev. Manag. Know. 2020; 10 (1) :103-91. URL: http://dpmk.ir/article-1-325-fa.html. (In Persian)
7. hassanpour Kazerouni N, Alavian S M, Tahmasebizadeh F. Analysis of Proportion and Prioritization of Public and Governmental Buildings for the Community Shelters in Eartquake Crisis Using GIS (Case Study: District 5 of Tehran City). Disaster Prev. Manag. Know. 2020; 10 (1) :103-91. URL: http://dpmk.ir/article-1-325-fa.html. (In Persian)
8. Izadi, M., Samouei, P. Locating Distribution Centers and Vehicle Routing in the disaster condition using two-stage programming. Emergency Management, 2021; 10(2): 131-140. (In Persian)
9. Tavakkoli-Moghaddam, R., Korzebor, M. R. Bi-objective mathematical modelling for a location-relocation problem of hierarchical healthcare facilities under uncertainty and disaster. Emergency Management, 2022; 11(1): 5-16. (In Persian)
10. Abolfazl Zolfaghari, Zahra Azizi , Hossin Aghamohammadi, Locating suitablesites for relief camps during severe floods using GIS (Case study: Chaharmahal and Bakhtiari province), Iranian Journal of Eco Hydrology, 2021; 8(1): 127-142. magiran.com/p2243570. (In Persian)
11. Hosseinzadeh, Nemat, Astelazhi, Alireza, Daniyali, Tahmineh. Clarification of crisis management strategies in worn-out urban contexts (Case study: District 19 of Tehran Municipality). Scientific and Research Quarterly of New Attitudes in Human Geography, 2019; 13(1): 114-133. (In Persian)
12. Moghimi S, Monsefi Parapari D. Site selection for Temporary Earthquake Shelter Compounds, Using Analytic Hierarchy Process and Weighted Linear Combination based on GIS; Case Study: Shahrood. Journal title 2019; 6 (1) :71-94. URL: http://jsaeh.khu.ac.ir/article-1-2865-fa.html. (In Persian)
13. seyedi, S., seyedi, S., amiri, M., taghavi fard, M. T. Establishing an emergency relief chain in a crisis with the approach of multiple transfer points and facilities location case study: south-central regions of Tehran. Emergency Management, 2020; 9(2): 19-31. (In Persian)
14. alikhani, A., barzegar, A., norllahi, H. Developing a New Model for Vulnerability Assessment of city zones with passive defense approach. Emergency Management, 2020; 8(2): 33-46. (In Persian)
15. rahmani, Z., Safaei, A. S., Paydar, M. M. A multi-objective optimization model for locating temporary treatment centers and logistic planning after a crisis. Emergency Management, 2019; 7(2): 19-33. (In Persian)
16. Khammar, G., Namazi, A. A. Locating Temporary Settlement Sites Using Fuller's Fuzzy Triangle Process in a Geographic Information System (GIS) (Case Study: The City of Chabahar). Journal of Geography and Regional Development, 2018; 15(2): 269-287. doi: 10.22067/geography.v15i2.44675.(-In Persian)
17. Yibing Yao, Yuyang Zhang, Taoyu Yao, Kapo Wong, Jin Yeu Tsou and Yuanzhi Zhang. (2021), A GIS-Based System for Spatial–Temporal Availability Evaluation of the Open Spaces Used as Emergency Shelters: The Case of Victoria, British Columbia, Canada, ISPRS Int. J. Geo-Inf. 2021, 10, 63. https://doi.org/10.3390/ijgi10020063.
18. Hamideh Deloui1, Sanaz Saeidi Mofrad, Identification and evaluation of physical indicators affecting emergency accommodation and safe places with physical resilience approach Case study: District 11 of Mashhad, Vol. 3, No. 1, 2020, 76-84.
19. Elnaz Asgari Namin, Ali Javan Forouzandeh, Maziyar Asefi and Kazem Shakeri. (2021), Explaining the Model of Post-Disaster Temporary Accommodation Strategy (Case Study: Sarpol-e Zahab, Kermanshah), Journal of Research and Rural Planning Volume 10, No. 3, Summer 2021, Serial No. 34, Pp. 39-60, eISSN: 2783-2007, ISSN: 2322-2514.
20. Didier Milindi Rugema, Tadesse Amsalu Birhanu, Gebeyehu Belay Shibeshi. (2022), Analysing land policy processes with stages model: Land policy cases of Ethiopia and Rwanda, Accepted 5 April 2022, Available online 11 April 2022, Version of Record 11 April 2022. doi.org/10.1016/j.landusepol.2022.106135.
21. M.S. Hossain, C.K. Gadagamma, Y. Bhattacharya, M. Numada, N. Morimura, K. Meguro. (2020), Integration of smart watch and Geographic Information System (GIS) to identify post-earthquake critical rescue area part. I. Development of the system, http://dx.doi.org/10.1016/j.pdisas.2020.100116. 2590-0617, Published by Elsevier Ltd
22. Kabir Uddin, Mir A. Matin, (2021). Potential flood hazard zonation and flood shelter suitability mapping for disaster risk mitigation in Bangladesh using geospatial technology, Progress in Disaster Science 11 (2021) 100185, doi.org/10.1016/j.pdisas.2021.100185.
23. Omidvar B, Khorram M. Optimization of the Construction System of Relief Tents Used in Emergency Accommodation. jorar 2022; 14 (3) :176-191.
24. Taghavifard M T, Yousefzadeh Y, Feizi K, Taghva M. Effective Components on Cash-based Intervention to Affected People by Natural Disasters Using Information and Communication Technology in Iran. jorar 2020; 12 (1) :57-66
25. https://region19.tehran.ir/
26. Richmond, Tom (2020), General Topology: An Introduction, De Gruyter, p. 32, ISBN 978-3-11-068657-9.
27. Maor, Eli (2019), The Pythagorean Theorem: A 4,000-Year History, Princeton University Press, pp. 133–134, ISBN:978-0-691-19688-6.
28. Ratcliffe, John G. (2019), Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, vol. 149, Springer, p. 32, ISBN 978-3-030-31597-9.
29. Gonzalez-Hidalgo, Manuel; Munar, Marc; Bibiloni, Pedro; Moya-Alcover, Gabriel; Craus-Miguel, Andrea; Segura-Sampedro, Juan Jose (October 2019). "Detection of infected wounds in abdominal surgery images using fuzzy logic and fuzzy sets". 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). Barcelona, Spain: IEEE: 99–106. doi:10.1109/WiMOB.2019.8923289. ISBN 978-1-7281-3316-4. S2CID 208880793.
30. Yanase, Juri; Triantaphyllou, Evangelos (2019). "The Seven Key Challenges for the Future of Computer-Aided Diagnosis in Medicine". International Journal of Medical Informatics. 129: 413–422. doi:10.1016/j.ijmedinf.2019.06.017. PMID 31445285. S2CID 198287435
31. Yanase, Juri; Triantaphyllou, Evangelos (2019). "A Systematic Survey of Computer-Aided Diagnosis in Medicine: Past and Present Developments". Expert Systems with Applications. 138: 112821. doi:10.1016/j.eswa.2019.112821. S2CID 199019309.
32. Bansod, Nitin A; Kulkarni, Marshall; Patil, S.H. "Soft Computing- A Fuzzy Logic Approach". In Bharati Vidyapeeth College of Engineering (ed.). Soft Computing. Allied Publishers. p. 73. ISBN: 978-81-7764-632-0. Retrieved 9 November 2018.
33. Kosko, Bart. "Fuzziness vs. Probability". University of South California. Retrieved 9 Novembe 2018
34. Høyrup, Jens (2018), "Mesopotamian mathematics", in Jones, Alexander; Taub, Liba (eds.), The Cambridge History of Science, Volume 1: Ancient Science, Cambridge University Press, pp. 58–72.
35. "What is 'fuzzy logic'? Are there computers that are inherently fuzzy and do not apply the usual binary logic?". Scientific American. Retrieved 5 May 2018.
36. Alfakih, Abdo Y. (2018), Euclidean Distance Matrices and Their Applications in Rigidity Theory, Springer, p. 51, ISBN 978-3-319-97846-8.
37. dam, John A. (2017), "Chapter 2. Introduction to the "Physics" of Rays", Rays, Waves, and Scattering: Topics in Classical Mathematical Physics, Princeton Series in Applied Mathematics, Princeton University Press, pp. 26–27, doi:10.1515/9781400885404-004, ISBN 978-1-4008-8540-4
38. Liberti, Leo; Lavor, Carlile (2017), Euclidean Distance Geometry: An Introduction, Springer Undergraduate Texts in Mathematics and Technology, Springer, p. xi, ISBN 978-3-319-60792-4.
39. Asli, Kaveh Hariri; Aliyev, Soltan Ali Ogli; Thomas, Sabu; Gopakumar, Deepu A. (2017-11-23). Handbook of Research for Fluid and Solid Mechanics: Theory, Simulation, and Experiment. CRC Press. ISBN:9781315341507.