یک رویکرد ترکیبی برای دستگاه معادلات انتگرال
Subject Areas : International Journal of Industrial Mathematicsحعفر بی آزار 1 , Y. Parvari Moghaddam 2 , kh. Sadri 3
1 - گروه ریاضی، دانشکده علوم ریاضی، دانشگاه گیلان، رشت، ایران.
2 - گروه ریاضی، دانشگاه گیلان، رشت، ایران.
3 - گروه ریاضی، ,واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.
Keywords: Systems of Fredholm and Volterra integral equations, Existence and uniqueness, Operational Matrices, Hybrid Method,
Abstract :
در این مقاله، یک روش محاسباتی برای حل دستگاه های معادلات انتگرال ولترا و فردهلم ارائه شده است که یک رویکرد ترکیبی بر اساس توابع بلوک پالس و نوع سوم چند جمله های چبیشف است که ما به آنها به طور خلاصه(HBV) اشاره خواهیم کرد. با استفاده از روش HBV و ماتریس عملیاتی انتگرال، چنین دستگاه هایی را می توان به دستگاه معادلات جبری کاهش داد. به وجود و منحصر به فرد بودن جواب هم پرداخته شده است. چند مثال برای روشن شدن کارآیی و اثر بخشی روش ارائه شده است.
[1] E. Babolian, Z. Masouri, S. Hatamzadeh, A direct method for numerically solving integral equations system using orthogonal triangular functions, International Journal of Industrial Mathematics 1 (2009) 135-145.
[2] J. Biazar, H. Ghazvini, Hes homotopy perturbation method for solving systems of Volterra integral equations of the second kind, Chaos, Solitons and Fractals 39 (2009) 770-777.
[3] C. Corduneanu, Integral Equations and Applications, Cambridge University Press (1991).
[4] O. Dikmann, Thresholds and traveling waves for geographical speard of infection, Journal Mathematics Biology 6 (1978) 109-130.
[5] O. Dikmann, Run for your life, A note on the asymptotic speed of propagation of an epidemic, Journal Differential Equation 33 (1979) 58-73.
[6] H. Ebrahimi, An Efficient Technique for Solving Systems of Integral Equations, Iranian Journal of Optimization 11 (2019) 23-32.
[7] M. Fawziah, A. A. Al-Saar, H. Kirtiwant, P. Ghadle, Some Numerical Methods to Solve a System of Volterra Integral Equations, International Journal of Open Problems in Computer Science and Mathematics 12 (2019).
[8] E. Hesameddini, M. Khorramizadeh, M. Shahbazi, Numerical solution for system of nonlinear FredholmHammerstein integral equations based on hybrid Bernstein BlockPulse functions with the Gauss quadrature rulec, Asian-European Journal of Mathematics 11 (2018) 185-189.
[9] S. Jahangiri, K. Maleknejad, and M. Tavassoli Kajani, A hybrid collocation method based on combining the third kind Chebyshevpolynomials and block-pulse functions for solving higher-kind of initial value problems, Kuwait Journal Sciense 43 (2016) 1-10.
[10] K. Maleknejad, M. Mohsenyzadeh, E. Hashemizadeh, Hybrid orthonormal Bernstein and block-pulse functions for solving Fredholm integral equations, Proceedings of the World Congress on Engineering 12 (2013) 91-94.
[11] K. Maleknejad, M. Shahrezaee, H. Khatami, Numerical solution of integral equations system of the second kind by block-pulse functions, Applied Mathematics Computation 166 (2005) 15-24.
[12] K. Maleknejad, M. Tavassoli Kajani, A hybrid collocation metod based on combining the third kind of Chebyshev polynomials and block-pulse functions for solving higer-order initial value problems, Kuwait journal of Science 43 (2016) 1-10.
[13] M. Razzaghi, Y. Ordokhani, N. Haddadi, Direct method for variational problems by using hybrid of block-pulse and Bernoulli polynomials, Rom. Journal Mathematic Computation Science 2 (2012) 1-17.
[14] P.K. Sahu, S. Saha Ray, Hybrid Legendre Block-Pulse functions for the numerical solutions of system of nonlinear FredholmHammerstein integral equations, Applied Mathematics and Computation 270 (2015) 871-878.
[15] E.S. Shoukralla, B.M. Ahmed, Numerical Solutions of Volterra Integral Equations of the Second Kind using Lagrange interpolation via the Vandermonde matrix, Journal of Physics: Conference Series 1447 (2020) 12-30.
[16] FZ Sun, M. Gao, SH. Lei, The fractal dimension of the fractal model of dropwise condensation and its experimental study, International Journal of Applied Nonlinear Science Numer Simul 8 (2007) 211-222.
[17] H. R. THieme, A model for the spatial speard of an epidemic, J. Math. Biol. 4 (1970) 337-351.
[18] H. Wang, HM. Fu, HF. Zhang, A practical thermodynamic method to calculate the best glass-forming composition for bulk metallic glasses, International Journal of Nonlinear Sciences and Numerical Simulation 8 (2007) 171-178.
[19] X. T. Wang, Y. M. Li, Numerical solutions of integrodifferential systems by hybrid of general block-pulse functions and the second Chebyshev polynomials Applied Mathematics and Computation 209 (2009) 266-272.
[20] L. Xu, JH. He, Y. Liu, Electrospun nanoporous spheres with Chinese drug, Int J Nonlinear Sci Numer Simul 8 (2007) 199-202.
[21] F. Zhou, X. Xu, The third kind Chebyshev wavelets collocation method for solving the time-fractional convection diffusion equations with variable coefficients, Applied Mathematics and Computation 280 (2016) 11-29.