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Abstract

In this paper, we present a computational method for solving systems of Volterra and Fredholm
integral equations which is a hybrid approach, based on the block-pulse functions and third kind of
the Chebyshev polynomials which we will refer to as (HBV), for short. By using the HBV method
and operational matrices of integration, such systems can be reduced into a linear system of algebraic
equations. The existence and uniqueness of the solutions are addressed. Some examples are provided
to clarify the efficiency and accuracy of the method.
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1 Introduction

W
e consider the following non-linear systems

of Volterra and Fredholm integral equa-

tions of the second kind:

Y (ξ) = F (ξ) +
∫ ξ
0 K(ξ, η, Y (η))dη,

0 ≤ ξ ≤ T
(1.1)

and

Y (ξ) = F (ξ) +

∫ 1

0
K(ξ, η, Y (η))dη, (1.2)

where

Y (ξ) = [y1(ξ), y2(ξ), ..., yn(ξ)]
T ,
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F (ξ) = [f1(ξ), f2(ξ), ..., fn(ξ)]
T ,

K(ξ, η, Y (η)) =

 k1(ξ,η,y1(η),y2(η),...,yn(η)
k2(ξ,η,y1(η),y2(η),...,yn(η)

...
kn(ξ,η,y1(η),y2(η),...,yn(η)

,
where Y (ξ) is unknown, but F (ξ) is assumed to

be known and K(ξ, η, Y (η)) is a linear or non-

linear operator of its arguments. Systems of lin-

ear integral equations and their solutions have

great importance in science and engineering since

they are powerful tools to model the different

natural processes, also they appear as reformu-

lations of other mathematical problems such as

partial differential equations and ordinary differ-

ential equations. This is a motivation for solving

this class of functional equations, [6], [7], [15],

[16], [18]. Most physical problems, such as bio-

logical applications in population dynamics and

genetics where impulses arise naturally or are

caused by control, can be modeled by an inte-
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gral equation or a system of these equations [3],

[4], [5], [17], [20]. Since it is difficult to obtain

an analytic solutions of these systems, some nu-

merical methods have been used to approximate

the solution of integral equations, such as a com-

bination of spectral methods and orthonormal or

piecewise bases and wavelets. Among piecewise

bases, the block-pulse functions are widely used

to numerically solve integral equations where the

domain of the solution of the problem must be

divided into subintervals in order to reach a re-

siable accuracy, which increasing the computa-

tional costs leads to decreasing the accuracy of

the method. For increasing the accuracy of the

block-pulse method, researchers have presented

different hybrid methods which obtain of combi-

nating the block-pulse functions and orthogonal

polynomials such as the Legendre [14], Bernstein

[10], Bernoulli [13], Chebyshev polynomials [19].

In this paper, we use a hybrid method consisting

of the block-pulse functions and the third-kind

Chebyshev polynomials for the computation of

the approximate solution of a class of the sys-

tem of integral equations which this approach has

not been used to solve this category of equations.

The main idea of using an orthogonal basis is that

the problem under study reduces into a system of

linear or nonlinear algebraic equations by consid-

ering truncated series of orthogonal basis func-

tions with unknown coefficients for the solution

of problem and using the operational matrices.

The advantages of this method are: decreasing

the computational costs and errors.

The organization of this paper is: In Section 2,

we describe the construction of hybrid functions.

In Section 3, we present the operational matrices

of the integration and product. In Section 4, we

solve systems of integral equations by using the

utilized hybrid method. In Section 5, the exis-

tence and uniqueness of the solution of systems

of Volterra integral equations are addressed. In

Section 6, we report numerical results by provid-

ing some examples to illustrate the effectiveness

and reability of the method, as well. Finally, the

discussion and conclusion will present in Section

7.

2 Construction of hybrid meth-
ods

In this section, we review the hybrid of the block

pulse functions and third kind of the Chebyshev

polynomials. Moreover, we explain the expan-

sions of functions.

2.1 Hybrid of block pulse functions
and third kind of the Chebyshev
polynomials

The HBV functions on the closed interval [0, T ]

are defined as follows,

Hi,j(ξ) =
√

2T
N vi(

2Nξ
T − 2i+ 1), (i−1)T

N ≤ ξ < iT
N ,

0, otherwise,
(2.3)

with the weight function, wi(ξ) = w(2Nξ−2i+

1), i = 1, 2, ..., N , j = 0, 1, , ...,M − 1, where N

and M are the kinds of the block-pulse functions

and third kind of the Chebyshev polynomials, re-

spectively. Hi,j(ξ) is a combination of the orthog-

onal third kind of the Chebyshev polynomials and

the block-pulse functions, and generates a com-

plete orthogonal system on L2[0, 1).

2.2 Expansions of functions

A function y(ξ) ∈ L2[0, 1) can be expanded in

term of HBV functions as the following,

y(ξ) =

∞∑
i=1

∞∑
j=0

ci,jHi,j(ξ), (2.4)

such that

ci,j =
(y(ξ), Hi,j(ξ))

(Hi,j(ξ),Hi,j(ξ))

=
N2

π

∫ 1

0
wi(ξ)Hi,j(ξ)y(ξ)dξ,

(2.5)

where (., .) denotes an inner product on L2 ∈ [0, 1]

having wi(ξ) as the weight function. In practice,
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infinite series (2.4) will be replaced into the fol-

lowing form,

y(ξ) ∼=
N∑
i=1

M−1∑
j=0

ci,jHi,j(ξ) = CTH(ξ), (2.6)

the vectors C and H(ξ) are as the following,

C = [c1,0, ..., c1,M−1, ...cN,M−1]
T ,

H(ξ) = [H1,0, ..., H1,M−1, ..., HN,M−1]
T .

(2.7)

The kernel k(ξ, η) ∈ L2([0, 1] × [0, 1]) can be ap-

proximated as follows,

k(ξ, η) ≈ HT (η)KH(ξ), (2.8)

where K is a NM ×NM known matrix with the

following entries,

Ki,j =
(Hi(ξ), (k(ξ, η),Hj(ξ))

(Hi(ξ),Hj(ξ))(Hi(η)Hj(η))
,

i, j = 1, 2, ..., NM.

(2.9)

3 Operational matrices of inte-
gration and product

The HBV method describes how a system of in-

tegral equations is converted into a system of lin-

ear or non-linear algebraic equations based on two

matrices of integration and product and the basis

vector.

3.1 Operational matrix of integration

In this subsection, we will compute the integral

of the H vector, which is important for solving

Volterra integral equations. To better describe,

computations of H6(ξ) are performed as the fol-

lowing,
H10(ξ) = 1,
H11(ξ) = 8ξ − 3, 0 ≤ ξ < 1

2 ,
H12(ξ) = 64ξ2 − 40ξ + 5,

H20(ξ) = 1,
H21(ξ) = 8ξ − 7, 1

2 ≤ ξ < 1,
H22(ξ) = 64ξ2 − 104ξ + 41,

(3.10)

where,

H6(ξ) = [H10,H11,H12,H20,H21,H22].

Also, by integrating (3.10) and presenting in ma-

trix form, we obtain the following approxima-

tions, that is applied for the third kind of the

Chebyshev wavelets [21]. For the present method,∫ ξ

0
H10(t)dt =

{
ξ, 0 ≤ ξ < 1

2 ,
1
2 ,

1
2 ≤ ξ < 1

=
3

8
H10 +

1

8
H11 +

1

2
H20

=
[
3
8

1
8 0 1

2 0 0
]
H6(ξ),

∫ ξ

0
H11(t)dt =

{
4ξ2 − 3ξ, 0 ≤ ξ < 1

2 ,
−1
2 , 1

2 ≤ ξ < 1,

=
−1

2
H10 +

−1

16
H11 +

1

16
H12

+
−1

2
H20

= [ −1
2

−1
16

1
16

−1
2

0 0 ]H6(ξ),

also, we have∫ ξ

0
H12(t)dt

= [ 5
24

−1
16

− 1
48

1
6
0 0 ]H6(ξ) +

1
24H13(ξ),∫ ξ

0
H20(t)dt = [ 0 0 0 3

8
1
8
0 ]H6(ξ),∫ ξ

0
H21(t)dt = [ 0 0 0 −1

2
− 1

16
1
16 ]H6(ξ),∫ ξ

0
H22(t)dt

= [ 0 0 0 5
24

− 1
16

− 1
48 ]H6(ξ) +

1
24H23(ξ).

The above approximations can be written in the

matrix form as follows,∫ ξ

0
H6(t)dt = P6×6(ξ) +H∗

6 (ξ), (3.11)

where

P6×6 =
1

4


3
2

1
2

0 2 0 0

−2 − 1
4

1
4

−2 0 0

5
6

− 1
4

− 1
12

2
3

0 0

0 0 0 3
2

1
2

0

0 0 0 −2 − 1
4

1
4

0 0 0 5
6

− 1
4

− 1
12

,

and H∗(ξ) = 1
24(0 0 H13(ξ) 0 0 H23(ξ))

T . In

fact, the matrix P6×6 can be written as,

P6×6 =
1

4

[
L3×3 J3×3

O3×3 L3×3

]
,
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where,

L3×3 =
1

4

 3
2

1
2 0

−2 −1
4

1
4

5
6 −1

4 − 1
12

 ,

J3×3 =
1

4

 2 0 0
−2 0 0
2
3 0 0

 . (3.12)

For M ≥ 4 one has

P =
1

N2


L J · · · J
0 L · · · J
...

...
. . .

...
0 0 · · · L

 , (3.13)

where J and L are two M × M matrices as the

following.

If M is even:

J =


τ1 0 · · · 0
−τ1 0 · · · 0
...

...
. . .

...
τM

2
0 · · · 0

−τM
2

0 · · · 0

 , (3.14)

where τi =
2

2i−1 , i = 1, 2, ..., M2 .

If M is odd:

J =



τ1 0 · · · 0
−τ1 0 · · · 0
...

...
. . .

...
−τM+1

2
−1 0 · · · 0

−τM+1
2

−1 0 · · · 0

τM+1
2

0 · · · 0


, (3.15)

where τi =
2

2i−1 , i = 1, 2, ..., M+1
2 , and

H∗(ξ) =
1

N2
(λ1 λ2 λ3 ... λN )T (3.16)

where

λi =
1

2M
(0 0 0 ... 0 HiM ), i = 1, 2, ..., N.

(3.17)

L =



3
2

1
2

0 ··· 0 0

−2 − 1
4

1
4

··· 0 0

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
(−1)m−22M−3
(M−1)(M−2)

0 0 ··· − 1
2(M−1)(M−2)

1
2(M−1)

(−1)m−12M−1
M(M−1)

0 0 ··· − 1
2(M−1)

− 1
2M(M−1)


.

(3.18)

In general, the integration of the vector H(ξ),

defined in (2.7), can be presented as follows,∫ ξ

0
H(t)dt = PH(ξ) +H∗(ξ). (3.19)

3.2 The product operational matrix
of HBV functions

In this section, we will derive the integration of

the inner product of two H vectorss in (2.7),

which is important for solving Fredholm integral

equations. Let

E =

∫ 1

0
H(ξ)HT (ξ)dξ, (3.20)

where, E is a NM ×NM nonsingular symmetric

matrix with N = 2,M = 3.

E =
1

4


2 −2 2

3 0 0 0
−2 14

3
−10
3 0 0 0

2
3 − 10

3
86
16 0 0 0

0 0 0 − 494
105

2182
315 −1622

315
0 0 0 922

315 −1622
315

25402
3465

0 0 0 − 782
315

11542
3465 − 19102

3465

.
(3.21)

Also, we obtain the product HT (ξ) and H(ξ),

which is important for solving Volterra integral

equations. Let∫ ξ

0
HT (t)H(t)Cdt = C∗H(ξ) +H∗(ξ), (3.22)

where C∗ is the product operational matrix, and

H∗(ξ) is introduced in (3.16). For N = 2 and

M = 3, the matrix C∗ can be written as,

C∗
6×10 =

[
β1 ϑ1 0
0 β2 ϑ2

]
,

where

βi =

γi0 γi1 γi2
γi1 γi0 − γi1 + γi2 γi1 − γi2
γi2 γi1 − γi2 γi0 − γi1 + γi2

 ,

ϑi =

 0 0
γi2 0

γi1 − γi2 γi2

 , i = 1, 2.
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4 The approximate solution of a
system of integral equations

Consider systems of integral equations (1.1) and

(1.2), let us approximate the functions by the pro-

posed approach as follows,

fi(ξ) ≃ F T
i H(ξ), yi(ξ) ≃ CT

i H(ξ),

ki,j(ξ, η) ≃ HT (ξ)Ki,jH(η),

i = 1, 2, ..., N, j = 1, 2, ...,M − 1.

(4.23)

Substituting these approximations into systems

(1.1) and (1.2) leads to:

CT
i H(ξ) ≃ F T

i H(ξ)

+

∫ ξ

0
HT (ξ)Ki,jH(η)HT (η)Cidη

≃ F T
i H(ξ) +HT (ξ)Ki,j [C

∗
i H(ξ)

+H∗(ξ)], i = 1, 2, ..., N,

j = 1, 2, ...,M − 1,
(4.24)

and

CT
i H(ξ) ≃ F T

i H(ξ)

+

∫ 1

0
HT (ξ)Ki,jH(η)HT (η)Cidη

≃ F T
i H(ξ) +HT (ξ)Ki,jECi,

i = 1, 2, .., N, j = 1, 2, ...,M − 1,
(4.25)

By solving (4.24) and (4.25) the coefficients of

Ci, i = 1, 2, ..., N will be obtained. Also the error

function e(yi(ξ)) can be constructed as follows,

e(yi(ξ)) =

∣∣∣∣yi(ξ)− N∑
i=1

M−1∑
j=0

cTi,jHi,j(ξ)

∣∣∣∣. (4.26)

If we set ξ = ξj , ξj ∈ [0, 1], the error values, at ξj
, can be obtained.

Given that the hybrid method presents an ap-

proximation for a solution to systems (1.1) and

(1.2), these equations must satisfy approximation

(2.6).

Theorem 4.1. Suppose that y(ξ) is a function

with square-integrable second derivative defined

on [0, 1] that its second derivative is bounded, i.e.

|y′′
(ξ) |≤ A, for some constant A, then series

(2.6) converges uniformly to y(ξ),

∥y(ξ)−CTH(ξ)∥2≤

πA2

8

∞∑
i=N+1

∞∑
j=M

1

i5(j − 1)4

where CTH(ξ) is the truncated H expansion of

y(ξ).

Proof. See [12].

An upper bound for the approximate function

y∗(ξ) is achieved in the following theorem:

Theorem 4.2. Let us take

y ∈ Hr

(1−t)r−
1
2 (1+t)r+

1
2
(−1, 1),

and IMy be the approximation solution obtained

from the suggested method, then

∥IMy − y∥≤ CM−r×(∫ 1

−1
(1− t)r−

1
2 (1 + t)r+

1
2 (
dry(t)

dt2
)2dt

) 1
2

,

where C is a positive constant and Hr
χ(Ω) is a

Chebyshev weighted Sobolev space.

Proof. See [9].

Now, we provide a suitable stability analysis

which theoretically justifies stability of the pro-

posed method for the numerical solution when

K(ξ, η, Y (η)) = k(ξ, η)Y (η) where k(ξ, η) is

a continuous and bounded function, i.e. ∥
k(ξ, η) ∥≤ K. Suppose PN be the space of all

algebraic polynomials of degree up to N . PN :

L2[0, 1) −→ PN which is an orthonormal projec-

tion such that for any Y ∈ L2[0, 1),

(Y − PNY, ϕ) = 0, ∀ϕ ∈ PN .

The estimation of the truncation error holds at

the following inequalities

∥ Y −PNY ∥L2[0,T )≤
CN−k max

0≤i<N
∥ Y (ξ) ∥

Hk
ω [

(i−1)T
N

, iT
N

)
,

∥ Y −PNY ∥∞≤

C

(
1 +O(

M−k

√
N

)

)
∥ Y (ξ) ∥L2[0,T ), k ≥ 0.

(4.27)
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Theorem 4.3. (Stability) Let Y ∗(ξ) be the hybrid

approximation to the exact solution of the sys-

tem of integral equations (1.1). Assume that the

function F (ξ) is continuous. Also suppose that

Ỹ ∈ PN and F̃ ∈ C[0, 1] are the error of Y and

F respectively, and 1 −KT > 0. Then, we have

∥ Ỹ ∥≤ C ∥ F̃ ∥ where C is the stability constant.

Proof. Y ∗(ξ) and Y ∗(ξ) + Ỹ (ξ) satisfy the fol-

lowing equations.

Y ∗(ξ) = PNF (ξ) + PN

∫ ξ

0
k(ξ, η)Y ∗(η)dη,

(4.28)

Y ∗(ξ) + Ỹ (ξ) = PNF (ξ) + F̃ (ξ)

+ PN

∫ ξ

0
k(ξ, η)(Y ∗(η) + Ỹ (η))dη,

(4.29)

where ξ ∈ [0, T ]. Subtracting (4.28) form (4.29)

we get,

Ỹ (ξ) = PN F̃ (ξ) + PN

∫ ξ

0
k(ξ, η)Ỹ (η)dη, (4.30)

and then

∥ Ỹ ∥≤∥ PN F̃ ∥ + ∥ PN

∫ ξ

0
k(ξ, η)Ỹ (η)dη ∥

(4.31)

Since ||PN ||= 1 one has

∥ Ỹ ∥ ≤∥ F̃ ∥ + ∥
∫ ξ

0
k(ξ, η)Ỹ (η)dη ∥

≤∥ F̃ ∥ +KT ∥ Ỹ ∥ .

So,

(1−KT ) ∥ Ỹ ∥≤∥ F̃ ∥

or

∥ Ỹ ∥≤ 1

1−KT
∥ F̃ ∥ .

By setting C = 1/(1 −KT ), the resired result is

achieved. ■

5 The existence and uniqueness
of the solution

To prove the existence and uniqueness of the so-

lution of system (1.1), we extend the simple iter-

ations:

Yn(ξ) = F (ξ) +

∫ ξ

0
K(ξ, η)Yn−1(η)dη, (5.32)

with Y0(ξ) = F (ξ).

For simplicity’s sake it is convenient to introduce

Ψn(ξ) = Yn(ξ)− Yn−1(ξ), n = 1, 2, ... , (5.33)

with Ψ0(ξ) = F (ξ).

Consider, the equation resulted from equation

(5.32), if n is replaced by n − 1, subtraction of

this equation from (5.32) results in;

Ψn(ξ) =

∫ ξ

0
K(ξ, η)Ψn−1(η)dη, n = 1, 2, ... .

(5.34)

Also from (5.33)

Yn(ξ) =
n∑

i=0

Ψi(ξ). (5.35)

In the following theorem we use this recurrrent

formula to prove the existence and uniqueness

of the solution under the only restriction that

K(ξ, η) and F (ξ) are continuous.

Theorem 5.1. If F (ξ) and K(ξ, η) are continu-

ous in 0 ≤ η < ξ ≤ T then the system of Volterra

integral equations of the second kind (1.1) has a

unique continuous solution for 0 ≤ ξ ≤ T .

Proof. There exist constants f and k such that:

∥F (ξ)∥≤ f, 0 ≤ ξ ≤ T,

∥K(ξ, η)∥≤ k, 0 ≤ η < ξ ≤ T,

we first prove by induction that:

∥Ψn(ξ)|≤
(kξ)nf

n!
, 0 ≤ ξ ≤ T, n = 1, 2, ....

(5.36)

If we assume that (5.36) is true for n−1, then we

have from (5.34)

∥Ψn(ξ)∥ ≤ fkn

(n− 1)!

∫ ξ

0
ηn−1dη

=
fknξn

n!
=

(kξ)nf

n!
.

Since (5.36) is obviously true for n = 0, it holds

for all n. These bounds make it obvious that the

sequence Yn(ξ) in (5.35) converges uniformly and

we can write

Y (ξ) =
∞∑
i=0

Ψi(ξ). (5.37)
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We now show that Y (ξ) satisfies equation (5.32).

By uniform convergence of (5.37) we can inter-

change the kind of integration and summation in

the following expression, to obtain:∫ ξ
0 K(ξ, η)

∑∞
i=0Ψi(η)dη

=
∑∞

i=0

∫ ξ
0 K(ξ, η)Ψi(η)dη

=
∑∞

i=0Ψi+1(ξ)
=

∑∞
i=0Ψi(ξ)− F (ξ).

This proves that Y (ξ) defined by (5.37) satis-

fies equation (5.32). Ψi(ξ) is clearly continuous.

Therefore Y (ξ) is continuous, since it is the limit

of a uniformly convergent sequence of continuous

functions.

To show that Y (ξ) is the only continuous solution,

suppose that there exists another continuous so-

lution Y ∗(ξ) of (5.32), then

Y (ξ)− Y ∗(ξ) =

∫ ξ

0
K(ξ, η)(Y (η)− Y ∗(η))dη.

(5.38)

Since Y (ξ) and Y ∗(ξ) are both continuous there

exists a constant β such that,

∥Y (ξ)− Y ∗(ξ)∥≤ β, 0 ≤ ξ ≤ T.

Substituting this into (5.38) gives,

∥Y (ξ)− Y ∗(ξ)∥≤ (kξ)nβ

n!
, 0 ≤ ξ ≤ T.

Obviously (kξ)nβ
n! −→ 0 as n → ∞ for any ξ, which

implies that

Y (ξ) = Y ∗(ξ), 0 ≤ ξ ≤ T.

■

6 Numerical Examples

For showing the efficiency of the suggested nu-

merical method, we consider the following exam-

ples. In the tables, the absolute error of y is de-

noted by AEy. Since everys arbitrary interval

[a, b] can be converted to [0, 1] by change of vari-

able t = (ξ − a)/(b − a), ξ ∈ [a, b], the illustrate

examples are considered over the interval [0, 1].

The results will be compared with those of some

existing methods.

Figure 1: Exact and approximate solutions for (a) y(ξ),
(b) z(ξ) for N = 1 and M = 3 of Example 6.1

Example 6.1. In this example, we solve the

following non-linear system of Fredholm integral

equations [14]:


y(ξ) = 23

35ξ +

∫ 1

0
ξη2(y2(η) + z2(η))dη,

z(ξ) = 11
12ξ

2 +

∫ 1

0
ξ2η(y2(η)− z2(η))dη,

where ξ ∈ [0, 1]. The exact solutions are

y(ξ) = ξ and z(ξ) = ξ2. Let us take the following

approximations,



23
35ξ ≃, F T

1 H(ξ),
11
12ξ

2 ≃ F T
2 H(ξ),

ξη2 ≃ HT (ξ)K1(ξ, η)H(η),
ξ2η ≃ HT (ξ)K2(ξ, η)H(η),
y(ξ) ≃ CT

1 H(ξ),
z(ξ) = CT

2 H(ξ).

Applying the presented method, the following
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Figure 2: Exact and approximate solutions for (a) y(ξ),
(b) z(ξ) for N = 1 and M = 3 of Example 6.2

system of algebraic equations will be obtained,

CT
1 H(ξ) ≃ F T

1 H(ξ)

+

∫ 1

0
HT (ξ)K1(ξ, η)H(η)

×(HT (η)C1C
T
1 H(η)

+HT (η)C2C
T
2 H(η))dη,

≃ F T
1 H(ξ)

+HT (ξ)K1(ξ, η)E(C1C
T
1 + C2C

T
2 )

×
∫ 1

0
H(η))dη,



CT
2 H(ξ) ≃ F T

2 H(ξ)

+

∫ 1

0
HT (ξ)K2(ξ, η)H(η)(HT (η)C1C

T
1

×H(η)−HT (η)C2C
T
2 H(η))dη,

≃ F T
2 H(ξ)

+HT (ξ)K2(ξ, η)E(C1C
T
1 − C2C

T
2 )

×
∫ 1

0
H(η))dη.

Some numerical results are presented in Figure

1. Table 2 compares the absolute error of the

present method with HBPF-GQR and HLBPF

in [8] and [14], respectively. These figure and Ta-

ble show a good agreement of numerical results

of the suggested method in comparison with two

other methods. To study the stability of the sys-

tem, we add the perturbation value as ε = 10−4

to the source function F (ξ), then we solve the

new system and compute the maximum absolute

errors. As seen from Table 1, the error values

remain constant.

Example 6.2. In this example, we study the

following non-linear system of Fredholm integral

equations [14]:



y(ξ) = 1− 17
20ξ −

7
6ξ

2 +

∫ 1

0
ξη2y3(η)dη

+
∫ 1
0 ξ

2ηz2(η)dη,
z(ξ) = 1− 17

12ξ + ξ2 − 31
10ξ

3

+

∫ 1

0
ξηy2(η)dη

+

∫ 1

0
ξ3ηz4(η)dη,

where ξ ∈ [0, 1]. The exact solutions are y(ξ) =

ξ + 1 and z(ξ) = ξ2 + 1. Let us take,

1− 17
20ξ −

7
6ξ

2 ≃ F T
1 H(ξ),

1− 17
12ξ + ξ2 − 31

10ξ
3 ≃ F T

2 H(ξ),
ξη2 ≃ HT (ξ)K1H(η),
ξ2η ≃ HT (ξ)K2H(η),
ξη ≃ HT (ξ)K3H(η),
ξ3η ≃ HT (ξ)K4H(η),
y(ξ) ≃ CT

1 H(ξ),
z(ξ) ≃ CT

2 H(ξ),

∫ 1

0
ξη2y3(η)dη ≃

∫ 1

0
HT (ξ)K1H(η)HT (η)

×C1C
T
1 H(η)HBT (η)C1dη

≃ HT (ξ)K1EC1C
T
1 EC1,∫ 1

0
ξ2ηz2(η)dη ≃

∫ 1

0
HT (ξ)K2H(η)HT (η)

×C2C
T
2 H(η)dη ≃ HT (ξ)K2EC2C

T
2

×
∫ 1

0
HT (η)dη,
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Table 1: Maximum absolute errors before and after considering perturbation ε = 10−4 for N = 1and M = 3
of Example 6.1

AEy AEz

Before After Before After
0.00704 0.00704 0.0247 0.0247

Table 2: Values of absolute errors for presented method, HBPF-GQR, and HLBPF of Example 6.1

HBV HBPF-GQR [8] HLBPF [14]

ξ N = 3,M = 4 n = 3,M = 4 M = 3, N = 4
(AEy, AEz) (AEy, AEz) (AEy, AEz)

0.2 (1.408e− 7, 8.381e− 9) (1.230e− 7, 7.801e− 9) (1.250e− 5, 1.185e− 8)
0.4 (2.816e− 9, 1.009e− 8) (4.026e− 8, 1.279e− 8) (2.500e− 5, 4.741e− 8)
0.6 (4.224e− 8, 5.142e− 8) (7.105e− 8, 7.330e− 9) (3.750e− 5, 1.066e− 7)
0.8 (5.633e− 9, 6.476e− 9) (5.724e− 8, 1.196e− 8) (5.000e− 5, 1.896e− 7)

∫ 1

0
ξηy2(η)dη ≃

∫ 1

0
HT (ξ)K3H(η)HT (η)

×C1C
T
1 H(η))dη ≃ HT (ξ)K3EC1C

T
1

×
∫ 1

0
HT (η)dη,

∫ 1

0
ξ3ηz4(η)dη ≃

∫ 1

0
HT (ξ)K4H(η)HT (η)

×C1C
T
1 H(η)dη ≃ HT (ξ)K4EC2C

T
2 EC2C

T
2

×
∫ 1

0
HT (η)dη.

Some numerical results are presented in Figure

2. In Table 4 the absolute errors of present

method compare with HBPF-GQR and HLBPF

[8] and [14], respectively. To study the stabil-

ity of the system, we add the perturbation value

as ε = 10−6 to the source function F (ξ), then

we solve the new system and compute the maxi-

mum absolute errors. As seen from Table 3, after

adding the perturbation, the error values remain

small.

Example 6.3. Consider the following non-linear

system of Volterra integral equations of the second

kind [2]:
y(ξ) = cos(ξ)− 1

2 sin
2(ξ) +

∫ ξ

0
y(η)z(η)dη,

z(ξ) = sin(ξ)− ξ +

∫ ξ

0
(y2(η) + z2(η))dη,

where ξ ∈ [0, 1]and the exact solutions are

y(ξ) = cos(ξ), z(ξ) = sin(ξ). We apply our

method for solving this problem. Some numerical

results are presented in Figure 3. Also we com-

pare the absolute errors computed by the present

method, and BPFs [2] in Table 6, then we add

the perturbation values as ε = 10−4 to the source

function F (ξ), then we solve the new system and

compute the maximum absolute errors which re-

sults are seen in Table 5.

Figure 3: Exact and approximate solutions for (a)y(ξ),
(b) z(ξ) for N = 2 and M = 3 of Example 3.
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Table 3: Maximum absolute errors before and after considering perturbation ε = 10−6, N = 1, and M = 3 of
Example 6.2

AEy AEz

Before After Before After
8.30e− 7 2.41e− 3 1.32e− 5 1.00e− 1

Table 4: Absolute errors of HBV method, HBPF-GQR, and HLBPF for (y(ξ), z(ξ)) of Example 6.2

HBV HBPF-GQR [8] HLBPF [14]

ξ N = 3,M = 4 N = 3,M = 4 M = 3, N = 4
0.2 (0, 0) (3.603e− 7, 2.630e− 7) (4.105e− 5, 2.000e− 5)
0.4 (0, 0) (2.935e− 7, 7.165e− 7) (6.782e− 5, 1.647e− 5)
0.6 (0, 0) (4.573e− 7, 1.020e− 7) (8.032e− 5, 3.428e− 5)
0.8 (0, 0) (1.584e− 6, 4.208e− 7) (7.854e− 5, 1.563e− 4)

Table 5: Maximum absolute errors before and after considering perturbation ε = 10−6, N = 2, and M = 3 of
Example 6.3

AEy AEz

Before After Before After
1.21e− 10 2.41e− 7 0.00 3.28e− 3

Table 6: Absolute errors for HBV method and BPFs for (y(ξ), z(ξ)) of Example 6.3

HBV HBPFs [2]
ξ N = 2,M = 4 h = 0.1
0.2 (4.075e− 7, 3.651e− 7) (8.022e− 7, 4.561e− 6)
0.4 (1.563e− 7, 6.946e− 7) (3.243e− 6, 9.614e− 6)
0.6 (8.237e− 7, 6.146e− 7) (7.206e− 6, 1.588e− 5)
0.8 (3.268e− 7, 7.461e− 8) (1.256e− 5, 2.450e− 5)

Example 6.4. Consider the following Fredholm

integral equations system [1]:

y(ξ) = 2eξ + eξ+1−1
ξ+1 +

∫ 1

0
eξ−ηy(η)dη

−
∫ 1

0
e(ξ+2)ηz(η)dη,

z(ξ) = eξ + e−ξ + eξ+1−1
ξ+1

−
∫ 1

0
eξηy(η)dη −

∫ 1

0
eξ+ηz(η)dη,

where ξ ∈ [0, 1]. The exact solutions are

y(ξ) = eξ and z(ξ) = e−ξ. Table 8 illustrates the

comparison between the exact solutions and nu-

merical solutions given by the proposed method

(HBV) for different values ofN andM with BPFs

method [11]. To study the stability of the system,

we add the perturbation values ε = 10−6 to the

source function F (ξ) for N = 2 and M = 4, then

we solve the new system and compute the maxi-

mum absolute errors. As seen from Table 7, after

inserting perturbations the error values remain

small.

7 Conclusion

It has already been proved that hybrid ap-

proaches are very effective devices for solving sys-

tems of integral equations of the second kind.

We used such a method, that is a combination

of block-pulse functions and third kind of the

chebyshev polynomials for solving linear and non-

linear systems of Volterra and Fredholm inte-

gral equations of the second kind. The efficiency
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Table 7: Maximum absolute errors before and after considering perturbation ε = 10−6, N = 1, and M = 4 of
Example 6.4

AEy AEz

Before After Before After
1.62e− 7 1.31e− 3 7.8e− 8 3.12e− 4

Table 8: Absolute errors for HBV method for different values of N and M and BPFs for (y(ξ), z(ξ)) of Example
6.4

ξ Exact HBV method BPFs [11] method

N = 1,M = 4 N = 2,M = 3 m = 32
0.2 (1.22140, 0.81873) (1.221403, 0.818726) (1.221403, 0.818711) (1.22496, 0.81636)
0.4 (1.49182, 0.67032) (1.491831, 0.670310) (1.491826, 0.670320) (1.47776, 0.67682)
0.6 (1.82212, 0.54881) (1.82206, 0.548837) (1.82211, 0.548815) (1.83910, 0.54386)
0.8 (2.22554, 0.44933) (2.225477, 0.449351) (2.225546, 0.449329) (2.2190, 0.45010)

and accuracy of the proposed method, for solving

such equations, are approved by some illustra-

tive examples. The results show that the present

method is very accurate even for small values ofN

and M , and the errors are very small. Moreover,

the existence and uniqueness of the solutions of

the system of Volterra integral equations are ad-

dressed. After adding some perturbations to the

source functions in the examples, the values of

maximum absolute errors remained constant or

small, this confirms the stability of the proposed

approach. Using this method for solving systems

of Fredholm and Volterra integral equations of

the first kind is still a subject of research.
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