یک روش DEA فازی برای انتخاب پروژه با استفاده از تحلیل ریسک مطلوب و نا مطلوب
Subject Areas : International Journal of Industrial Mathematicsشقایق صادقیان 1 , فرهاد حسین زاده لطفی 2 , بهروز دانشیان 3 , نیما آذرمیر 4
1 - گروه ریاضی، واحد تبریز، دانشگاه ازاد اسلامی، تبریز، ایران.
2 - گروه ریاضی، واحد علوم و تحقیقات، دانشگاه ازاد اسلامی، تهران، ایران.
3 - گروه ریاضی، واحد تهران مرکز، دانشگاه ازاد اسلامی، تهران، ایران.
4 - گروه ریاضی، واحد تبریز، دانشگاه ازاد اسلامی، تبریز، ایران.
Keywords: انتخاب پورتفولیو فازی, تیوری فازی, ریسک پایین ریسک بالا, تحلیل پوششی داده ها,
Abstract :
این مقاله یک مدل مبتنی برDEA برای تحلیل ریسک فازی در انتخاب پروٰژه ارایه می دهد. ما از مفهوم نیم واریانس برای اندازه گیری ریسک بالا و پایین ویک مدل DEAبرای طبقه بندی ریسک مطلوب و نامطلوب استفاده می کنیم. اولا مدل پیشنهادی شامل شاخص های جدید ریسک مطلوب-بازده و ریسک نامطلوب-بازده است.بنابراین یک مدل جدید برای ارزیابی و طبقه بندی ریسک مطلوب و نامطلوب ارایه شده است. ونهایتا به یک مدل DEAفازی برای انتخاب پورتفولیو پروژه توسعه داده شده است. یک مثال کاربردی با ۳۷ پروژه در دسترس برای توضبح و کاربردی بودن روش پیشتهادی ارایه شده است.
[1] A. Amirteimori, M. Zadmirzaei, F. Hassanzadeh, Developing a new integrated artificial immune system and fuzzy non-discretionary DEA approach,Soft Computing 25 (2021) 8109-8127.
[2] F.J. Arteaga, A. Ebrahimnajad, A. Zabihi, A New Approach for Solving Intuitionistic Fuzzy Data Envelopment Analysis Problems, Fuzzy Optimization And Modelling 2 (2021) 46-57.
[3] A. Cheaitoua, R. Larbib, B. AlHousani, Decision making framework for tender evaluation and contractor selection in ublic organizations with risk considerations, SocioEconomic Planning Sciences 12 (2018) 1-12.
[4] Z. Chen, X. Ming, A rough-fuzzy approach integrating bestworst method and data envelopment analysis to multi-riteria selection of smart product service module, Appl. Soft Comput. 94 (2020) 106-129.
[5] W. Chen, Y. Gai, P. Gupta, Efficiency evaluation of fuzzy portfolio in different risk measures via DEA, Ann Oper Res. 14 (2016) 1-25.
[6] W. Chen, S. S. Li, J. Zhang, M. K. Mehlawat, A comprehensive model for fuzzy multi-objective portfolio selection based on DEA cross-efficiency model, Soft Computing 13 (2018) 1-12.
[7] W. D. Cook, R. H. Green, Project prioritization: A resource-constrained data envelopment analysis approach, Socio-conomic Planning Sciences 34 (2000) 85-99.
[8] A. Dadashi and B. Mirbaha, Prioritizing high way safety improvement projects: A Monte- Carlo based Data Envelopment Analysis approach, Accident Analysis and Prevention 123 (2019) 387-395.
[9] R. Dandage, Sh. S.Mantha, S. B. Rane, Ranking the risk categories in international projects using the TOPSIS method, International Journal of Managing Projects in Business 11 (2018) 317-331.
[10] A. Ebrahimnejad, N. Amani, Fuzzy data envelopment analysis in the presence of undesirable outputs with ideal points, Complex & Intelligent Systems 7 (2021) 379-400.
[11] A. Hatami-Marbini, S. Saati, Efficiency evaluation in two stage data envelopment analysis under a fuzzy environment: a commonweights approach, Appl Soft Comput 72 (2018) 156-165.
[12] N. G.Hall, D. Zhuoyu Long, J. Qi, M. Sim, Managing Under performance Risk in Project Portfolio Selection, Operations Research 63 (2015) 660-675.
[13] P. Gupta, MK. Mehlawat, A. Kumar, S. Yadav, A. Aggarwal, A Credibilistic Fuzzy DEA Approach for Portfolio Efficiency Evaluation and Rebalancing Toward Benchmark Portfolios Using Positive and Negative Returns, International Journal of Fuzzy Systems 32 (2020) 1-20.
[14] H. Jafarzadeh, P. Akbari, B. Abedin, A methodology for project portfolio selection under criteria prioritization uncertainty and projects interdependency combination of fuzzy QFD and DEA, Expert Systems with Application 110 (2018) 237-249.
[15] M. Kachouei, A. Ebrahimnejad, H. Bagherzadeh-Valami, A common-weights approach for efficiency evaluation in fuzzy data envelopment analysis with undesirable outputs: Application in banking industry, Journal of Intelligent & Fuzzy Systems 39 (2020) 7705-7722.
[16] J. Kettunen, A. Salo, Estimation of downside risks in project portfolio selection, Production and Operations Management 26 (2017) 1839-1853.
[17] X. Li, Z. Qin, Interval portfolio selection models within the framework of uncertainty theory, Economic Modelling 41 (2014) 338-344.
[18] P. Lio, B. Zhu, H. Seiti, L. Yang, Risk-based decision framework based on R-numbers and best-worst method and its application to research and development project selection, Information Sciences 571 (2021) 303-322.
[19] Z. Mashayekhi, H. Omrani, An integrated multi-objective Markowitz-DEA crossefficiency model with fuzzy returns for
portfolio selection problem, Applied Soft Computing 38 (2016) 1-9.
[20] SH. Nasseri, A. Ebrahimnejad, O. Gholami, Fuzzy stochastic data envelopment analysis with undesirable outputs and its application to banking industry, Int J Fuzzy Syst. 20 (2018) 534-548.
[21] H. Omrani, A. Alizadeh, A. Emrouznejad, T.Teplopa, A Robust Credibility DEA Model with Fuzzy Perturbation Degree: An Application to Hospitals Performance, Expert Systems with Applications, In Press.
[22] J. P. Paquin, C. Gauthier, P.P. Morin, The downside risk of project portfolios: The impact of capital investment projects and the value of project efficiency and project risk management programs, International Journal of project management 34 (2016) 1460-1470.
[23] P. Peykani, F. Hosseinzadeh Lotfi, S. J. ture review, current trends, and future directions, Fuzzy Optimization and Decision Making (2021). http://dx.doi.org/10.1007/s10700-021-09364-x/
[24] P. Peykani, E. Mohammadi, A. Emrouznejad, MS. Pishvaee, M. Rostamy-Malkhalifeh, Fuzzy data envelopment analysis: an adjustable approach, Expert Syst Appl. 136 (2019) 439-452.
[25] Z. Qin, S. Kar, H. Zheng, Uncertain portfolio adjusting model using semi-absolution deviation, Soft Computing 20 (2016) 717-725.
[26] A, Saeidifar, E, Pasha, The possibilistic moments of fuzzy numbers and their applications, Journal of Computational and Applied Mathematics 2 (2009) 1028-1042.
[27] S. Sadeghiyan, F. Hossseinzadeh-Lotfi, B. Daneshian, N. Azarmir-Shotorbani, A Model to Reduce the Risk of Project Selection utilizing Data envelopment analysis, Journal of modelling in management, (2021). Inpress. http://dx.doi.org/10.1108/JM2-08-2020-0220/
[28] Ch. Carlsson, R. Fullr, On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets and Systems 122 (2001) 315-326.
[29] Q. Shi, Y. Zhou, Ch. Xiao, R. Chen, J. Zuo, Delivery risk analysis within the context of program management using fuzzy logic and DEA: A China case study, International Journal of Project Management 32 (2014) 341-349.
[30] M. G. Speranza, Linear programming models for portfolio optimization, The Journal of Finance 12 (1993) 107-123.
[31] M. Tavana, M. Karampour, F. J. SantosArtega, E. Ghorbaniane, A fuzzy hybrid project portfolio selection method using data envelopment analysis, TOPSIS and Integer programming, Expert Systems with Application 42 (2015) 8432-8444
[32] M. Tavana, Gh. Khosrojerdi, H. Mina, A. Rahman, A hybrid mathematical programming model for optimal project portfolio selection using fuzzy inference system and analytic hierarchy process, Evaluation and Program Planning 77 (2019) 1-11.
[33] M. Toloo, M. Mirbolouki, A new project selection method using Data Envelopment Analysis, Computers & Industrial Engineering 21 (2019) 1-27.
[34] E. Vercher, J.D. Bermdez, J. Vicente Segura, Fuzzy portfolio optimization under downside risk measures, Fuzzy Sets and Systems 158 (2007) 769-782.
[35] E. Vercher, J. D. Bermdez, Portfolio optimization using a credibility mean-absolute semi-deviation model, Expert Systems with Applications 42 (2015) 7121-7131.
[36] Y. J. Wu, J. C. Chen, A structured method for smart city project selection, International Journal of Information Management 56 (2021) 1-9.
[37] A. E. Yamami, K. Mansouri, M. Qbadou, E. H. Illousamen, Multi objective IT project selection model for improving SME strategy deployment, International Journal of Electrical and Computer Engineering 8 (2018) 1102-1111.
[38] W. G. Zhang, Y. J. Liu, W. J. Xu, A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs, European Journal of Operational Research 222 (2012) 341-349.
[39] X. Zhang, L. Fang, K. W. Hipel, S. Ding, Y. Tan, A hybrid project portfolio selection procedure with historical performance consideration, Expert Systems With Applications 142 (2020) 1-28.
[40] Z. B. Zhou, H. L. Xiao, Q. Y. Jin, W. B. Liu, DEA frontier improvement and portfolio rebalancing: an application of china mutual funds on considering sustainability information disclosure, Eur. J. Oper. Res. 269 (2018) 111-131.