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Abstract

This paper proposes a DEA-based model for analyze the fuzzy risk in project selection. We used con-
cept semi-variance for measure upper and downside risk and a DEA model for classification desirable
and undesirable risk. Firstly, the proposed model includes new desirable and undesirable risk-return
indexes. Thus a novel DEA model is presented for evaluation and classification desirable and unde-
sirable risks and finally, is extend to fuzzy DEA model for project portfolio selection. An applied
example is used to explain the proposed approach and usefulness and applicability of this approach
have been illustrated using the 37 available projects.

Keywords : Fuzzy data envelopment analysis; Project portfolio selection; Downside risk; Upper Risk.

—————————————————————————————————–

1 Introduction

P
roject portfolio selection is an importance

issue for organizations that to make the

best decisions for selecting an optimal subset of

projects, especially, if the decision-makers are

challenged with limited resources. The selection

is difficult because of the existence of uncertainty

in Success of projects. Obtaining an optimal sub-

set of projects which achieve organizations earn-
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ings target and avoid risk is main objective in

modeling project portfolio selection. Moreover,

avoiding risk dont should to deprive organization

of opportunities. As a result, a model should be

designed to consider the risk and opportunities in

project selection. So far, much research has been

done on the selection of research projects, includ-

ing Shi et al. [?] used DEA and fuzzy theory to

calculate risk in 2010 Asian Games construction

projects. To select an optimal subset of projects

and risk assessment, G. Hall et al. [?] proposed a

discrete nonlinear optimization model using Ban-

ders analysis method. Cheaitoua et al. [?] pre-

sented a combined approach of multi-criteria de-

cision making (MCDM) and fuzzy theory for se-

lecting the best construction contractor for con-

struction projects. They have used DEA to eval-

uate contractors as well as the fuzzy theory to
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assess risk. Kettunen and Salo [?] presented a

calibration framework by using Monte Carlo sim-

ulation for estimation of downside risks in project

portfolio selection. Dandage et al. [?] provided

a TOPSIS method for ranking the risk categories

according to their importance. TO select project

portfolio, Tavana et al. [?] proposed a two-stage

hybrid model using FAHP method and Fuzzy

Inference System (FIS). They tried Maximizes

project benefits and minimizes project risks. Al-

though variance is used as a risk measure, but,

the variance considers higher and lower returns

equally undesirable, Li and Qin [?], Mashayekhi

and Omrani [?] and Qin et al. [?]. Vercher et

al. [?] presented two fuzzy portfolio selection

models where the objective is to minimize the

downside risk constrained by a given expected

return and finally, formulated the portfolio se-

lection problem as a linear program. To evalu-

ate the portfolio efficiency, Chen et al. [?] used

of DEA based fuzzy portfolio estimation models

in different risk measures, i.e., possibilistic vari-

ance, possibilistic semi-variance, and possibilis-

tic semi- absolute deviation. Similarly, Speranza

[?] and Vercher and Bermdez [?] introduced the

possibilistic semi-absolute deviation as in addi-

tion to semi-variance. To assess a project’s NPV

and its impact on a firm’s expected profitabil-

ity and down-side operational risk, Paquin et al.

[?] used of a stationary stochastic model. Also,

Chen et al. [?] proposed a model for multi-

objective portfolio selection in fuzzy environment

by mean-semivariance model and data envelop-

ment analysis cross-efficiency model. To rebal-

ancing portfolio and efficiency evaluation, Zhou

et al. [?] a DEA frontier improvement approach

under the mean-variance and Gopta et al. [?]

used a credibilistic fuzzy DEA approach. To se-

lect the IT process as well as improve the devel-

opment strategy in small and medium-sized en-

terprises, Yamami et al. [?] introduced a multi-

objective method. To select the project portfo-

lio under prioritization between criteria, uncer-

tainty and interdependence between projects, Ja-

farzadeh et al. [?] proposed a combination of

DEA and fuzzy theory. Toloo and Mirblouki [?]

was obtained the average efficiency with differ-

ent weights for each project using a linear pro-

gramming method. They note that Cook and

Green [?] considers the hybrid project as (n+1)th

project under evaluation, and finds the optimal

set of common weights. To prioritize the im-

provement of highway safety projects considering

limited resources, Dadashi and Mirbaha [?] used

the Monte Carlo-based DEA method. Zhang et

al. [?] considered projects historical performances

and using EVIKOR method, evaluated the per-

formances of projects. To select a feasible portfo-

lio based on the political goal and the annual bud-

get in the selection smart city project, Wu and

Chen [?] used the modified Delphi method to de-

termine the elements of the decision considering

panel members for their opinions, as well as prior-

itized each alternative according to the goal of the

decision using AHP method. Ebrahimnejad and

Amani [?] introduced a novel approach for solving

FDEA models in the presence of undesirable out-

puts using Ideal and anti-ideal points, as well as

used a lexicographic approach to find the best and

the worst fuzzy efficiencies of ideal and anti-ideal

points, respectively. To evaluate the efficiency of

decision-making units in fuzzy data envelopment

analysis with undesirable outputs, Kachouei et

al. [?] used a common-weights approach. They

considered the fuzzy additive DEA model as a lin-

ear programing problem and then obtained fuzzy

efficiency based on the common set of weights.

Arteaga et al. [?] presented a model for solv-

ing intuitionistic fuzzy data envelopment anal-

ysis problems. Hatami-Marbini et al. [?] used

a lexicographic multi-objective linear program-

ming (MOLP) approach to solve FDEA models.

Peykani et al. [?] introduced a FDEA model

based on adjustable the optimistic-pessimistic pa-

rameters, the model considered preference of de-

cision makers. And also Peykani et al. [?] pre-

sented a paper to review some FDEA models

based on applied possibility, necessity, credibility,

general fuzzy measures and chance-constrained

programming (CCP) to deal with data ambigu-

ity. To assess of efficiency under uncertainty,

Omrani et al. [?] proposed a robust credibility

DEA model in which a fuzzy credibility approach

was used for constructing fuzzy sets and a robust
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optimization approach for uncertainty in fuzzy

sets. Chen and Ming [?] proposed a combined

approach of rough-fuzzy and BWM-DEA method

for selection smart product service module. The

bestworst method (BWM) construct a practical

multi-criteria framework with pairwise relations.

To analyzing the effects of uncertainty and risk,

Liu et al. [?] extended the R-numbers method

to BWM and presented an R-BWM approach in

the R&D project selection. Amirteimoori et al.

[?] proposed a combined fuzzy nondiscretionary

DEA (FNDEA) model and artificial immune sys-

tem (AIS) to predict and find the optimal val-

ues of DMUs. Nasseri et al. [?] presented fuzzy

stochastic DEA model with undesirable outputs

for hybrid uncertain environment. They consid-

ered three fuzzy DEA models with respect to

probabilitypossibility, probability necessity and

probabilitycredibility constraints.

The main contributions of this paper are as fol-

lows:

1- Providing a novel project portfolio selection

model in fuzzy environment, the model is a sin-

gle objective linear programming and formulated

based on upper, downside risk and the possibilis-

tic mean value.

2- Classification risk into desirable and unde-

sirable outputs using DEA.

3-introduct new index of risk-opportunity in

project selection, because dont deprive organiza-

tion of opportunities due to avoiding of risk.

4- The model is capable to consider resource

constraints.

The rest of the paper is organized as follows.

Section 2 provides background involving the DEA

method and fuzzy upper and downside risk mea-

sure. The proposed model is presented in Section

?? an applied example and its results are pre-

sented in Section ??. Finally, the conclusion of

the paper is summarized Section ??.

2 Preliminaries

In this section, we briefly review some definitions

triangular fuzzy numbers which will be used in

the following sections.

2.1 Fuzzy numbers

Let Ã = (α, a, β)LR be a triangular fuzzy number

with tolerance interval [α, β], left width α > 0

and right width β > 0, if its membership function

determines the following form:

µÃ(x) =


1− a−x

α , a− α ≤ x ≤ a,

1− x−a
β , a ≤ x ≤ a− β,

0, otherwise.

(2.1)

The γ-level set of [A]γ = [a− (1− γ)α, a+(1−
γ)β], ∀γϵ[0, 1].

Carlsson and Fuller [?] presented the possibilis-

tic mean value and variance of A as

E(A) =

∫ 1

0
γ[a− (1− γ)α+ a

+ (1− γ)β]dγ = a+
β − α

6

(2.2)

Var(A) =

∫ 1

0
γ[β(γ)− α(γ)]2dγ

=
(β − α)2

24
.

(2.3)

According to Saeidifar and Pasha [?], and Zhang

et al. [?] the upper possibilistic semivariance and

the lower possibilistic semivariance of A defined,

respectively

Var+(A) =

∫ 1

0
2γ(E(A)− β(γ))2dγ

=

(
α+ β

6

)2

+
β2

18

(2.4)

Var−(A) =

∫ 1

0
2γ(E(A)− α(γ))2dγ

=

(
α+ β

6

)2

+
α2

18

(2.5)

Easily seen that if Ỹrk = (αrk, yrk, βrk)

is a triangular fuzzy number then
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E (Yrk) =

∫ 1

0
γ[yrk − (1− γ)αrk + yrk + (1− γ)βrk]dγ = yrk +

βrk − αrk

6
(2.6)

Var+ (Yrk) =

∫ 1

0
2γ (E (Yrk)− βrk(γ))

2 dγ =

(
αrk + βrk

6

)2

+
β2
rk

18
(2.7)

Var− (Yrk) =

∫ 1

0
2γ (E (Yrk)− αrk(γ))

2 dγ =

(
αrk + βrk

6

)2

+
α2
rk

18
(2.8)

2.2 Non-linear Mean - variance model

In the last paper, we have proposed a model

based on mean -variance using DEA for selec-

tion of project. Sadeghiyan et al. [?] used di-

rection vectors for increasing the expected return

and decreasing the risk of project portfolio. Let

P = {p1, . . . , pk, . . . , pn} be the set of indepen-

dent projects, I =
{
i1, . . . , ik, . . . , i|I|

}
be the set

of inputs and O =
{
o1, . . . , or, . . . , o|o|

}
be the set

of outputs. And also, let d′pj = max {E (ykj)} −
E (ypj) , d

′
pj = σ2 (ypj)−min

{
σ2 (ykj)

}
, and d′′′pi =

xpi − min {xki} be the direction vectors for the

mean, the variance of outputs and inputs, respec-

tively. Thus the model as follow as

maxZ =

n∑
p=1

cpαp (2.9)

S.t

n∑
k=1

λpkE (ykj) ≥ E (ypj) + αpd
′
pj, j ∈ O, p ∈ P (2.9a)

n∑
k=1

λpkσ
2 (ykj) ≤ σ2 (ypj)− αpd

′′
pj, j ∈ O, p ∈ P (2.9b)

n∑
k=1

λpkxki ≤ xpi − αpd
′′
pi, i ∈ I, p ∈ P (2.9c)

n∑
k=1

λpk = 1, p ∈ P (2.9d)

n∑
k=1

ckxki + bi = Bi, i ∈ I (2.9e)

(1− ck)xki +Mck +Mdki ≥ bi +
1

M
, k ∈ P, i ∈ I (2.9f)∑

i∈I
dki ≤ |I|−1, k ∈ P (2.9g)

ck, dki ∈ {0, 1} k ∈ P, i ∈ I

λpk ≥ 0, k ∈ P, p ∈ P

bi ≥ 0, i ∈ I

M ≫ 0
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The first constraints set (2.9a)-(??) increase

the expected return as well as decrease the risk of

project portfolio. And also, this model remains

feasible despite the presence of negative data due

to the directional vectors. The constrains (??)-

(??) are for controlling the resources.

3 Modeling

In this section, we proposed a novel project port-

folio selection model in fuzzy environment that is

capable to consider different risks.

3.1 Project selection model

Firstly, we present a project selection model with

limited resources based on risk oriented DEA. In

order to improve the performance of project se-

lection model, we classified risk in to upper and

downside risks, which the downside risk (undesir-

able output) and inputs should be decreased and

also, the upper risk (desirable output) with the

possibilistic mean value should be increased. Be-

cause, it is necessary to consider the risks of not

selecting the project as well as the risks of select-

ing it. In this paper, we employ the lower pos-

sibilistic semivariance and the upper possibilistic

semivariance to measure the undesirable risk and

desirable risk of model selection of projects, re-

spectively. We will have

minθ (3.10)

S.t

n∑
k=1

λkδ
r
DO (yrk) ≥ δrDO (yrp) , ∀r

n∑
k=1

λkδ
r
UDO (yrk) ≤ δrUDO (yrp) , ∀r

n∑
k=1

λkxik ≤ θxip, ∀i

hk ≥ 0, ∀k

By integrating model (2.5) into binary program-

ming framework, the project portfolio selection

model will be defined in the sequel.

min
n∑

p=1

cpθp (??)

S.t

n∑
k=1

λpkδ
r
DO (yrk) ≥ δrDO (yrp) , ∀r,∀p (3.11a)∑

K=1

λpkE (yrk) ≥ E (yrp) , ∀r,∀p (3.11b)

n∑
k=1

λpkδ
r
UDO (yrk) ≤ δrUDO (yrp) , ∀r (3.11c)

n∑
k=1

λpkxik ≤ θpxip, ∀i (3.11d)

n∑
k=1

ckxki + Li = Bi, ∀i (3.11e)

(1− ck)xki +Mck +Mdki ≥ Li +
1

M
, ∀k, ∀i (3.11f)∑

i

dki ≤ |I|−1, ∀k (3.11g)

ck, dki ∈ {0, 1} ∀k, ∀i
λpk ≥ 0, ∀p, ∀k
Li ≥ 0, ∀i
M ≫ 0
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where ck is a binary variable and M is a suffi-

ciently large number. If ck = 1, then project k is

included in the portfolio s∗, and 0 otherwise. The

optimal objective function value of model (??) is

the highest aggregate-efficiency score of selected

feasible portfolio. The constraint (??) shows that

the sum of used resources of projects in the port-

folio s∗ cannot exceed available resource Bi, bi is

the slack in resource i and indicates the remaining

amount of resource i. The constraints set (??)-

(??) do not let a project be considered which vi-

olate resource constrains. Let ck = 1. There-

fore, the constraint (??) is obviously satisfied be-

cause M is a sufficiently large number. Now, let

ck = 0, dki be a binary variable and the constraint

(??) guarantees that at least one of the variables

dk1, dk2, . . . dk|I remain at zero. If dki = 0, then

xki ≥ bi +
1
M . Thus the remaining amount of re-

source i, is not sufficient for support the project

k, similar to Cook and Green model (2000).

3.2 Fuzzy project portfolio selection
model

The evaluation of risks is hard, accurately. There-

fore, it is necessary to consider the uncertainty

on inputs and outputs. Hence, we construct the

project portfolio selection model in fuzzy environ-

ment. In the following, we use of equations (2.6),

(2.7) and (2.8) for measure fuzzy parameters the

lower possibilistic semivariance, the upper pos-

sibilistic semivariance and the possibilistic mean

value in the purposed model. Based on model

(??), we will have

min
n∑

p=1

cpθp (3.12)

S.t

n∑
k=1

λpk

((
αrk + βrk

6

)2

+
βrk

2

18

)
≥
(
αrp + βrp

6

)2

+
βrp

2

18
, ∀r, p ∈ K

∑
K=1

λpk

(
yrk +

βrk − αrk

6

)
≥ yrp +

βrp − αrp

6
, ∀r, p ∈ K

n∑
k=1

λpk

((
αrk + βrk

6

)2

+
αrk

2

18

)
≤

((
αrp + βrp

6

)2

+
αrp

2

18

)
, ∀r, p ∈ K

4 Definition

Let A with [A]γ = [a(γ), ā(γ)] and B with

[B]γ = [b(γ), b̄(γ)] be two fuzzy numbers for all

γ ∈ [0, 1] Then A ≤ B if and only if ā(γ) ≤ b̄(γ)

and a(γ) ≤ b(γ).

Based on above Definition, let Xik =

(αik, xik, βik) and Bi = (αi, bi, βi) be two

triangular fuzzy numbers, and the γ-level set of

[Xik]
γ = [xik − (1− γ)αik, xik + (1− γ)βik] and

[Bi]
γ = [bi − (1− γ)αi, bi + (1− γ)βi] , ∀γϵ[0, 1].

Then the constraint
∑n

k=1 hpkx̃ik ≤ θpx̃ip transfer

into two constraint following

n∑
k=1

λpk (xik − (1− γ)αik) ≤ θp (xip − (1− γ)αip)

n∑
k=1

λpk (xik + (1− γ)αik) ≤ θp (xip + (1− γ)βip)

And the constraint
∑n

k=1 ckx̃ik+ L̃i = B̃l transfer

into two constraint following

n∑
k=1

ck (xik − (1− γ)αik) + (mi − (1− γ)li)

= bi − (1− γ)αi,
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n∑
k=1

ck (xik + (1− γ)αik) + (mi + (1− γ)Ri)

= bi + (1− γ)βi,

Where Li = (li,mi, Ri) and [Li]
γ =

[mi − (1− γ)li,mi + (1− γ)Ri] , ∀γϵ[0, 1]. And

also the constraint (1− ck) x̃ki + Mck + Mdki ≥

L̃i +
1
M into

(1− ck) (xik − (1− γ)αik) +Mck +Mdki

≥ mi − (1− γ)li +
1

M′

(1− ck) (xik + (1− γ)βik) +Mck +Mdki

≥ mi + (1− γ)Ri +
1

M

Therefore, we present fuzzy model following

min

n∑
p=1

cpθp (4.13)

S.t

n∑
k=1

λpk

((
αrk + βrk

6

)2

+
β2
rk

18

)
≥
(
αrp + βrp

6

)2

+
β2
rp

18
, ∀r,∀p

∑
K=1

λpk

(
yrk +

βrk − αrk

6

)
≥ yrp +

βrp − αrp

6
, ∀r,∀p

n∑
k=1

λpk

((
αrk + βrk

6

)2

+
α2
rk

18

)
≤

((
αrp + βrp

6

)2

+
α2
rp

18

)
, ∀r

n∑
k=1

λpk (xik − (1− γ)αik) ≤ θp (xip − (1− γ)αip) , ∀i, ∀p

n∑
k=1

λpk (xik + (1− γ)αik) ≤ θp (xip + (1− γ)βip) , ∀i, ∀i, ∀p

n∑
k=1

ck (xik − (1− γ)αik) + (mi − (1− γ)li) = bi − (1− γ)αi, ∀i

n∑
k=1

ck (xik + (1− γ)βik) + (mi + (1− γ)Ri) = bi + (1− γ)βi, ∀i

(1− ck) (xik − (1− γ)αik) +Mck +Mdki ≥ mi − (1− γ)li +
1

M
, ∀k, ∀i

(1− ck) (xik + (1− γ)βik) +Mck +Mdki ≥ mi + (1− γ)Ri +
1

M
, ∀k, ∀i∑

i

dki ≤ |I|−1, ∀k

ck, dki ∈ {0, 1} ∀k, ∀i
λpk ≥ 0, ∀k, ∀p
li ≤ mi ≤ Ri, ∀i
li,mi, Ri ≥ 0, ∀i
M≫ 0

Where the variable θp is accurate. Whilst soft-

ware is capable to solve model (??), it can be

linearized as follows: 0 ≤ ap = cpθp ≤ 1

ap ≤ cp
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ap ≤ θp ap ≥ cp + θp − 1 Then model (??) becomes:

min

n∑
p=1

ap (??)

S.t

n∑
k=1

λpk

((
αrk + βrk

6

)2

+
βrk

2

18

)
≥
(
αrp + βrp

6

)2

+
βrp

2

18
, ∀r,∀p (4.14a)

∑
K=1

λpk

(
yrk +

βrk − αrk

6

)
≥ yrp +

βrp − αrp

6
, ∀r,∀p (4.14b)

n∑
k=1

λpk

((
αrk + βrk

6

)2

+
αrk

2

18

)
≤

((
αrp + βrp

6

)2

+
αrp

2

18

)
, ∀r (4.14c)

n∑
k=1

λpk (xik − (1− γ)αik) ≤ θp (xip − (1− γ)αip) , ∀i,∀p (4.14d)

n∑
k=1

λpk (xik + (1− γ)αik) ≤ θp (xip + (1− γ)βip) , ∀i, ∀p (4.14e)

n∑
k=1

ck (xik − (1− γ)αik) + (mi − (1− γ)li) = bi − (1− γ)αi, ∀i (4.14f)

n∑
k=1

ck (xik + (1− γ)βik) + (mi + (1− γ)Ri) = bi + (1− γ)βi, ∀i (4.14g)

(1− ck) (xik − (1− γ)αik) +Mck +Mdki ≥ mi − (1− γ)li +
1

M
, ∀k, ∀i (4.14h)

(1− ck) (xik + (1− γ)βik) +Mck +Mdki ≥ mi + (1− γ)Ri +
1

M
, ∀k, ∀i (4.14i)∑

i

dki ≤ |I|−1 ∀k (4.14j)

ap ≤ cp, ∀p
ap ≤ θp, ∀p
ap ≥ cp + θp − 1, ∀p
ck, dki ∈ {0, 1} ∀k, ∀i
λpk ≥ 0, ∀k, ∀p
li ≤ mi ≤ Ri, ∀i
li,mi, Ri ≥ 0, ∀i
M≫ 0

Let cp = 0, then from the last constraints set

we have ap = 0 which shows the pth project is

excluded from the evaluation. Otherwise, it can

achieve non-negative values. The constraints set

(??)-(??) are for feasibility of selected projects,

similar to the model (??) that explained in sec-

tion ??. In this model, the selected projects eval-

uates according to three index the lower possi-

bilistic semivariance, the upper possibilistic semi-

variance and the possibilistic mean value. The

constraints set (??)-(??) increases the upper pos-

sibilistic semivariance and the possibilistic mean
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value of the project portfolio, and the constraint

(??) prevents the lower possibilistic semivari-

ance of the portfolio be increased. That is, any

project entered into the project portfolio must in-

crease the desirable risk of the portfolio and vice

versa, decreases the undesirable risk. Therefore,

projects selects in terms of better performance as

much as possible.

F
A

P
 s

c
o

re

Project

0.2-Level 0.4-Level 0.6-Level 0.8-Level 1-Level

Figure 1: FAP results and ranking of all
Projects

Theorem 4.1. The model (??) is feasible if

∃t; t ∈ P &X̃t ≤ B̃.

Proof. Let X = (α, x, β)LR and B = (α, b, β)LR
be two triangular fuzzy numbers, then

∃t; t ∈ P &xt − (1− γ)αt ≤ b− (1− γ)α,

∃t; t ∈ P&xt + (1− γ)βt ≤ b+ (1− γ)β.

Without loss of generality, suppose that t = j1
and P1 = P − {j1} . We consider the following

two cases:

Case A: If ∼
(
∃j; j ∈ P1&X̃j ≤ B̃− X̃j1

)
.

then ∀j
(
j ∈ P1 ⇒ X̃j ≰

←−
B̃− X̃j1

)
, and

hence ∀j(j ∈ P1 ⇒ ∃i; xij − (1 − γ)αij

> (bi − (1− γ)αi) −
(
xij1 + (1− γ)αij1

)
),

Figure 2: Upper semivariance

and xij + (1− γ)βij > (bi + (1− γ)βi) −(
xij1 − (1− γ)βij1

)
.

If cj1 = 1, ck = 0 (k ̸= j1), we will have

∀j(j ∈ P1 ⇒ ∃i;xij − (1− γ)αij > mi − (1− γ)li
& xij + (1 − γ)βij > mi + (1 − γ)Ri)

If i = ij and cj1 = 1&ck = 0, k ̸= j1

then λkp =

{
1, k = p

0, k ̸= p
, ap = 0, ∀p And

∀i, dj1i = 0 & dki =

{
1, i = ij

0, i ̸= ij
, j ∈ P1 is a

feasible solution.

Case B: ∃j; j ∈ P1&X̃j ≤ B̃ − X̃j1 . with-

out loss of generality, let that j = j2 and

P2 = P1 − {j2}. Then following two cases are

considered:

Case B1: Suppose ∼ (∃j; j ∈ P2&X̃j ≤
B̃ − X̃j1 − X̃j2). then ∀j(j ∈ P2 ⇒ X̃j ̸=
B̃ − X̃j1 − X̃j2), so

∀j(j ∈ P2 ⇒ ∃i, xij − (1 − γ)αij >

(bi− (1−γ)αi)− (xij1 +(1−γ)αij1)− (xij2 +(1−
γ)αij2)

and
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Figure 3: lower semivariance

∀j(j ∈ P2 ⇒ ∃i, xij + (1 − γ)βij >

(bi + (1 − γ)βi) − (xij1 − (1 − γ)βij1)−
(xij2 − (1− γ)βij2).

If cj1 = cj2 = 1, ck = 0(k ̸= j1 and k ̸= j2), then

for all j we will have

(j ∈ P2 ⇒ ∃i;xij + (1− γ)βij > mi + (1− γ)Ri).

Now if i = ij and cj1 = cj2 = 1&ck = 0(k ̸= j1 and

k ̸= j2) then λkp =

{
1, k = p
0, k ̸= p

, ap = 0, ∀p

And

∀i, dj1i = dj2i = 0 & dki ={
1, i = ij
0, i ̸= ij

, j ∈ P2

is a feasible solution model (??) and com-

pletes the proof.

CaseB2: ∃j, j ∈ P2&X̃j ≤ B̃ − X̃j1 − X̃j2 .

without loss of generality, let j = j3 and

P3 = P2− {j3}. Then we consider the following

two cases:

Case1: ∼
(
∃j; j ∈ P3&X̃j ≤ B̃ − X̃j1 − X̃j2 − X̃j3

)
.

Figure 4: Mean value

By continuing in the same way, we can find the

feasible solution.

Lemma 4.1. For all the optimal solution of the

model (??)

∀pH∗
p =

(
λ∗
p1, · · · , λ∗

pn

)
̸= 0

Proof. (reductio ad absurdum), Assume that

there is an optimal solution H∗
p = 0.

From the first set of constraints, we have(
αrp+βrp

6

)2
+

β2
rp

18 ≤ 0 that is impassible. Thus

for each the optimal solution of the model (??)

∀p ∃t;λ∗
pt > 0.

Lemma 4.2. For each the optimal solution of the

model (??)

∀p∃i
n∑

k=1

λ∗
pk (xik − (1− γ)αik)

= θ∗p (xip − (1− γ)αip)

or

∀p∃i
n∑

k=1

λ∗
pk (xik + (1− γ)αik)

= θ∗p (xip + (1− γ)αip)
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Table 1: Fuzzy data set for 37 projects

Project Critria1 Critria2 Critria3

1 (61.003, 64.809, 69.354) (62.099, 71.806, 83.708) (63.422, 67.126, 72.049)
2 (50.600, 54.909, 59.163) (60.823, 66.397, 69.556) (53.446, 58.779, 64.329)
3 (21.107, 23.504, 25.536) (16.776, 19.391, 21.194) (05.544, 06.734, 08.695)
4 (41.672, 45.734, 53.526) (42.673, 44.557, 46.497) (15.091, 20.066, 22.210)
5 (48.165, 50.841, 54.714) (43.269, 44.557, 51.355) (28.779, 32.750, 37.334)
6 (48.644, 53.138, 57.636) (67.433, 44.557, 86.558) (33.347, 38.325, 45.074)
7 (45.420, 49.552, 55.919) (55.079, 58.174, 62.621) (35.939, 38.215, 39.852)
8 (42.867, 49.314, 58.941) (43.515, 48.880, 54.013) (42.092, 49.260, 53.298)
9 (44.992, 54.337, 63.355) (51.377, 59.490, 66.191) (34.919, 41.390, 45.643)
10 (47.794, 52.843, 58.956) (45.473, 53.554, 58.619) (44.591, 51.253, 56.464)
11 (46.268, 54.841, 59.153) (47.827, 53.153, 57.585) (47.111, 54.274, 62.027)
12 (26.951, 29.679, 34.010) (28.740, 33.434, 38.480) (26.733, 31.470, 35.930)
13 (27.810, 30.051, 33.735) (36.652, 38.403, 40.089) (31.410, 34.351, 42.089)
14 (73.200, 78.811, 90.397) (80.489, 86.166, 92.952) (58.453, 60.115, 62.736)
15 (62.289, 71.367, 76.268) (63.440, 71.231, 76.607) (20.636, 24.494, 26.949)
16 (29.264, 38.070, 44.828) (31.361, 35.805, 38.998) (35.607, 39.942, 42.720)
17 (33.372, 37.181, 41.194) (22.364, 29.239, 32.673) (46.664, 52.132, 59.061)

18 (41.755, 42.708, 44.221) (41.755, 42.708, 44.221) (39.555, 41.200, 43.071)
19 (45.493, 52.520, 60.587) (50.526, 55.374, 60.735) (46.109, 46.788, 47.329)
20 (16.912, 19.557, 21.781) (17.265, 19.014, 22.713) (20.891, 24.833, 30.249)
21 (46.456, 56.550, 65.529) (48.251, 54.024, 58.004) (46.456, 56.550, 65.529)
22 (48.648, 56.738, 66.519) (42.729, 46.603, 52.737) (47.295, 50.233, 54.124)
23 (58.157, 62.495, 66.830) (59.239, 69.723, 77.487) (47.167, 50.758, 55.443)
24 (48.867, 50.274, 53.561) (44.480, 56.614, 65.019) (51.017, 59.473, 65.723)
25 (30.677, 32.871, 36.158) (30.496, 31.868, 33.565) (29.260, 32.529, 35.365)
26 (52.801, 57.149, 64.523) (51.635, 57.481, 63.748) (45.786, 55.863, 64.313)
27 (43.523, 50.355, 58.124) (47.514, 50.712, 59.810) (49.576, 52.777, 55.505)
28 (24.307, 29.890, 33.595) (31.815, 34.267, 38.329) (35.145, 40.669, 43.926)
29 (44.723, 48.103, 53.971) (45.367, 55.747, 61.382) (46.321, 53.047, 59.087)
30 (48.076, 57.672, 66.003) (54.752, 60.814, 65.864) (48.190, 57.859, 65.686)
31 (39.657, 45.465, 48.227) (45.993, 52.896, 62.148) (45.185, 54.163, 59.352)
32 (35.399, 41.366, 47.850) (38.563, 48.321, 60.852) (32.382, 37.708, 41.686)
33 (22.941, 25.760, 28.291) (23.158, 26.122, 30.584) (24.866, 27.942, 32.606)
34 (19.106, 21.719, 24.212) (24.485, 31.662, 37.337) (18.009, 20.222, 23.485)
35 (51.809, 55.842, 58.844) (46.297, 52.265, 61.262) (34.812, 42.165, 48.418)
36 (49.182, 63.388, 70.649) (57.886, 68.713, 81.386) (52.113, 57.054, 64.714)
37 (52.358, 59.816, 69.397) (49.579, 72.834, 84.585) (34.108, 43.517, 49.621)

Proof. (reductio ad absurdum), Assume that this

constraints be strict in an optimal solution (for a

constant p ’), then

∀i, θ∗p >

∑n
k=1 λ

∗
pk (xik + (1− γ)αik)

xip + (1− γ)α′
ip

, and

∀i, θ∗p >

∑n
k=1 λ

∗
pk (xik − (1− γ)αik)

xip − (1− γ)αip
.

We consider

θ̄p = max
{
maxi

{∑n
k=1 λ

∗
pk(xik+(1−γ)αik)

xiṗ+(1−γ)αiṗ

}
,

maxi

{∑n
k=1 λ

∗
pk(xik−(1−γ)αik)

xiṗ−(1−γ)αiṗ

}}
. It is obviously

θ̄ṗ < θ∗p. we define f = θ∗p − θ̄ṗ > 0, obviously,

ā′p = a∗p− f < a∗p is a feasible solution. Assuming

that all components of the previous optimal

solution are constant except θ∗p which is changed

to θ̄ṗ and also, a∗p to āṗ.

āṗ < a∗ṗ ≤ c∗ṗ, āṗ ≤ θp ⇔ a∗ṗ − f ≤ θ∗ṗ − f ⇔



250 SH. Sadeghiyan et al., /IJIM Vol. 14, No. 2 (2022) 239-258

Continued of table ??

Project Critria4 Critria5

1 (38.717, 44.055, 50.812) (42.629, 46.035, 51.94)
2 (36.611, 41.904, 45.049) (36.833, 46.547, 53.782)
3 (10.516, 11.194, 12.202) (05.159, 05.915, 06.544)
4 (21.067, 22.693, 24.274) (16.729, 19.185, 23.415)
5 (27.996, 31.240, 34.334) (20.386, 25.862, 32.776)
6 (26.614, 30.935, 33.624) (23.161, 26.334, 30.463)
7 (30.019, 33.333, 37.424) (16.538, 18.182, 19.686)
8 (21.441, 25.538, 27.335) (33.224, 37.510, 41.909)
9 (38.405, 44.564, 49.717) (25.411, 28.938, 31.892)
10 (17.371, 19.382, 20.584) (34.232, 47.803, 55.315)
11 (18.533, 21.879, 26.268) (40.789, 48.608, 57.426)
12 (9.266, 10.987, 11.77) (25.124, 27.999, 30.398)
13 (17.054, 20.443, 22.839) (20.067, 24.609, 32.884)
14 (40.589, 45.871, 51.928) (48.810, 52.718, 56.348)
15 (35.516, 38.335, 42.132) (24.194, 27.358, 29.755)
16 (13.924, 17.043, 18.951) (34.717, 35.783, 38.093)
17 (57.700, 61.968, 71.445) (45.824, 50.373, 56.476)

18 (09.494, 10.558, 12.098) (37.261, 39.917, 44.115)
19 (13.959, 17.748, 19.901) (42.597, 47.079, 51.931)
20 (07.812, 08.657, 09.555) (18.457, 24.946, 29.352)
21 (26.276, 30.894, 33.767) (46.819, 52.602, 59.600)
22 (34.039, 37.243, 44.279) (42.460, 44.585, 46.410)
23 (28.378, 36.740, 43.829) (47.167, 50.758, 55.443)
24 (35.253, 40.201, 46.952) (48.772, 50.578, 51.333)
25 (12.167, 13.553, 14.263) (27.213, 35.497, 38.659)
26 (33.734, 31.842, 29.115) (42.757, 46.370, 52.874)
27 (24.449, 26.720, 28.385) (40.375, 48.544, 52.832)
28 (23.130, 23.854, 25.595) (27.543, 33.579, 36.450)
29 (21.986, 22.496, 24.266) (36.240, 44.002, 50.522)
30 (14.666, 16.765, 18.063) (30.901, 38.503, 49.984)
31 (06.730, 07.785, 09.367) (31.867, 35.760, 38.772)
32 (05.020, 05.373, 05.908) (23.801, 26.941, 28.963)
33 (08.143, 08.567, 08.827) (21.551, 23.841, 25.106)
34 (03.311, 03.985, 04.561) (08.414 09.643, 10.208)
35 (09.252, 10.247, 11.031) (30.954, 32.478, 34.402)
36 (15.805, 18.835, 21.875) (40.663, 47.725, 52.994)
37 (13.888, 16.213, 18.999) (25.073, 29.036, 31.994)

a∗ṗ ≤ θ∗ṗ,

āṗ ≤ c∗ṗ + θp − 1 ⇔ a∗ṗ − f ≤ c∗ṗ + θ∗ṗ − f − 1 ⇔
a∗ṗ ≤ c∗p + θ∗ṗ, so āṗ is the feasible solution which

ā∗p < a∗p then
∑n

p=1 a
∗
p + ā∗p <

∑n
p=1 a

∗
p. This

contradicts the optimality of a∗.

5 An applied example

In this section, we consider fuzzy data set

for 37 projects under five criteria with

(889.650, 1023.569, 1123.017) units of acces-

sible resources, which are seen in Table ??. In

addition, the cost of each project is listed in

Table ??. The data were generated for each

project based on real data using software [?]. The

proposed model is implemented using CPLEX
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Table 2: Fuzzy data set for 37 projects

Project Cost

1 (78.962, 83.578, 90.500)
2 (83.130, 88.054, 96.686)
3 (50.051, 53.755, 57.247)
4 (52.725, 65.804, 73.368)
5 (67.962, 77.904, 89.209)
6 (85.400, 93.316, 108.04)
7 (85.483, 88.450, 92.285)
8 (71.805 83.671, 96.716)
9 (84.633, 96.467, 105.637)
10 (72.105, 80.947, 95.529)
11 (66.771, 76.148, 88.229)
12 (40.000, 45.689, 56.209)
13 (49.995, 57.876, 66.438)
14 (79.541, 90.292, 113. 035)
15 (62.745, 80.938, 93.699)
16 (33.155, 35.912, 37.932)
17 (25.028, 30.160, 34.693)

18 (46.540, 49.133, 54.132)
19 (72.152, 75.746, 80.053)
20 (43.878, 50.427, 60.108)
21 (73.469, 84.100, 97.111)
22 (77.981, 85.978, 89.727)
23 (64.099, 76.239, 87.662)
24 (73.230, 87.817, 95.449)
25 (61.778, 68.889, 77.589)
26 (53.768, 67.188, 74.211)
27 (57.881, 63.199, 66.746)
28 (76.782, 85.049, 102.071)
29 (73.897, 76.763, 81.123)
30 (69.613, 80.007, 88.174)
31 (35.501, 42.683, 48.746)
32 (50.490, 52.349, 54.644)
33 (43.969, 49.835, 59.291)
34 (21.623 26.468, 33.420)
35 (33.808, 35.651, 38.406)
36 (50.884, 62.204, 68.806)
37 (68.804, 72.340, 76.710)

solver in Gams software version 25.1.2. All data

sets considered non-symmetric triangular fuzzy

number. Tables ??, ?? and ?? show the lower

possibilistic semivariance, upper possibilistic

semivariance and possibilistic mean value, which

are obtained from (2.6), (2.7) and (2.8), respec-

tively. Moreover, it can be clearly observed in

Figures ??, ?? and ??. The proposed model is

solved at five different γ - levels and the selected

projects are shown in Table ??. The decision

makers can choose the satisfying portfolio based

on the preferences between different γ - levels.

The model according to each γ - level, increases

desirable risk and return, and also decreases

undesirable risk. Additionally, note that the

obtained portfolios are welldiversified. With

diverse portfolios, an unexpected bad outcome

for one project will likely be offset by a good

outcome on another. For instance, in Table ??

under γ = 0.2, projects selected are in form of
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Table 3: Lower possibilistic semivariance

project critria1 critria2 critria3 critria4 critria5

1 678.769 804.785 733.253 305.929 349.382
2 476.907 677.71 543.997 259.697 303.456
3 085.183 55.683 007.339 020.480 005.283
4 348.216 322.035 051.301 081.762 060.313
5 422.884 352.725 167.428 151.461 101.594
6 445.22 911.324 232.608 140.145 109.678
7 399.876 553.352 231.319 176.412 051.644
8 390.001 369.412 351.187 091.626 218.129
9 438.545 530.595 248.025 297.649 127.085
10 443.447 415.854 394.134 056.780 287.842
11 427.64 435.737 454.167 074.835 360.380
12 143.582 171.403 148.777 017.062 120.698
13 148.183 238.220 204.869 060.365 100.255
14 1041.124 1195.521 597.786 329.287 439.529
15 748.830 768.401 086.556 237.555 113.366
16 200.066 192.150 240.857 040.792 214.218
17 216.319 111.927 431.468 648.250 407.360

18 302.19 302.190 276.563 017.958 261.078
19 427.561 485.688 360.632 042.672 349.015
20 057.477 060.956 096.894 011.769 082.417
21 468.249 442.957 468.249 138.501 436.362
22 499.908 354.591 409.985 234.750 319.544
23 621.840 714.237 416.063 189.569 416.063
24 424.096 442.971 523.158 256.756 410.512
25 176.363 165.662 163.575 027.628 161.673
26 537.245 517.933 453.181 172.943 355.600
27 392.239 445.378 443.266 110.748 331.884
28 125.953 192.905 242.293 095.670 155.898
29 381.689 430.880 427.837 086.278 282.064
30 489.906 570.661 489.230 041.705 234.781
31 301.915 442.366 416.982 009.714 195.024
32 262.127 357.154 210.646 004.717 108.806
33 102.147 110.022 126.102 011.683 086.271
34 72.404 139.472 065.844 002.330 013.566
35 489.234 440.438 259.750 016.183 171.881
36 533.256 724.952 530.002 053.316 335.516
37 564.083 636.559 259.368 040.759 125.388

{6, 8, 9, 13, 14, 15, 21, 22, 23, 24, 26, 30}, z = 12. It

can be found that among the projects selected,

projects {14, 6, 15, 23, 30, 26} are risky, respec-

tively. The project 14 has the higher undesirable

risk in criteria 1 and 2, but note that the project

has the higher desirable risk and return in

comparison to other projects. And also project

13 is a riskless project. Projects {8, 9, 21, 22, 24}
have fewer risks in comparison to other projects.

Success a riskless project is valuable, because of

advancing one or more organization objectives.

With selecting different of γ-levels, we will have

different portfolios. The selected projects could

be different in each γ - level and it was due to

values of γ and resource constraints. According

to the γ-level, the model uses of riskless projects

for decreasing risk of portfolio. In the γ = 0.8,

projects selected listed in form of {1, 2, 3, 4, 6, 7,
8, 9, 14, 21, 22, 24}. It can be easily observed that

projects {1, 2, 6, 14} are risky in comparison to
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Table 4: Upper possibilistic semivariance

project critria1 critria2 critria3 critria4 critria5

1 739.247 979.826 798.180 366.090 398.301
2 529.123 740.965 615.210 297.980 388.780
3 096.660 065.003 009.832 022.608 006.184
4 410.909 340.979 066.054 089.841 075.224
5 460.315 395.233 198.850 173.410 138.187
6 498.313 1074.94 283.700 163.610 131.431
7 458.985 602.669 247.800 204.160 057.979
8 480.915 426.292 410.570 107.600 254.380
9 549.077 627.354 296.020 353.030 147.718
10 509.644 491.876 460.790 063.555 392.727
11 503.104 492.882 544.610 094.087 451.158
12 167.489 207.776 180.790 019.988 136.966
13 168.441 252.873 248.470 073.186 137.959
14 1197.42 1315.61 626.620 387.570 483.567
15 856.435 870.845 103.250 266.100 130.034
16 264.131 222.002 271.810 049.974 227.874
17 248.722 143.448 504.280 746.870 467.899

18 313.969 313.969 292.700 021.082 292.064
19 516.515 548.791 366.970 053.850 398.033
20 067.944 073.056 123.480 013.450 111.355
21 586.909 500.529 586.910 163.490 511.926
22 614.250 407.671 448.460 279.310 339.046
23 682.062 852.846 463.240 251.550 463.241
24 450.807 567.916 618.540 310.190 424.755
25 196.714 176.584 185.490 030.706 203.560
26 613.649 595.579 566.500 156.820 409.350
27 474.692 518.692 477.880 122.300 396.388
28 155.830 218.289 280.870 102.340 187.564
29 432.396 525.857 502.590 092.137 350.905
30 603.523 645.121 599.920 047.881 320.533
31 343.758 539.423 499.260 012.072 222.122
32 319.712 480.258 248.930 005.256 123.938
33 117.374 132.193 150.820 012.328 095.486
34 84.691 183.613 078.468 002.877 015.422
35 532.481 529.861 322.660 018.188 184.400
36 676.168 906.779 611.790 066.023 399.677
37 679.338 897.478 331.530 050.097 147.330

other projects as well as the project 3 has riskless

among 37 projects (see Table ?? and figure??).

That is, the project 3 has the minimum of

downside risk among accessible projects. In

the γ = 1, projects selected are in form of

{2, 3, 5, 6, 7, 9, 14, 21, 22, 23, 24, 29}. We can see

that, in all cases, portfolios are including riskless

projects and risky, and the model is committed

to its presentation goals. Using riskless project,

it can offset greedy project selection.that is, whit

diversifiable risks, an unexpected bad outcome

for one project will be offset by a good outcome

on another. Also, it can be observed the FAP

model of ranking results in figure ??.

Figure ?? shows results of the FAP model for

ranking in different of γ- levels. As can be seen,

project 17 have high ranking, but in comparison

to other projects, it havent the highest score the

upper semivariance and the mean value (See fig-

ures ??, ?? and ??). For example, project 14 have
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Table 5: Possibilistic mean value

project critria1 critria2 critria3 critria4 critria5

1 66.201 75.407 68.564 46.071 47.587
2 56.336 67.853 60.593 43.310 49.372
3 24.242 20.127 07.259 11.475 06.146
4 47.710 45.194 21.252 23.228 20.299
5 51.933 45.905 34.176 32.296 27.927
6 54.637 47.745 40.279 32.103 27.551
7 51.302 59.431 38.867 34.567 18.707
8 51.993 50.630 51.128 26.520 38.957
9 57.398 61.959 43.177 46.449 30.018
10 54.703 55.745 53.232 19.918 51.317
11 56.989 54.779 56.760 23.168 51.381
12 30.855 35.057 33.003 11.404 28.878
13 31.038 38.976 36.131 21.407 26.745
14 81.677 88.243 60.829 47.761 53.974
15 73.697 73.425 25.546 39.438 28.285
16 40.664 37.078 41.127 17.881 36.346
17 38.485 30.957 54.198 64.259 52.148

18 43.119 43.119 41.786 10.992 41.059
19 55.036 57.076 46.991 18.738 48.635
20 20.368 19.922 26.393 08.947 26.762
21 59.729 55.65 59.729 32.142 54.732
22 59.716 48.271 51.371 38.950 45.243
23 63.941 72.764 52.137 39.315 52.137
24 51.056 60.037 61.924 42.151 51.005
25 33.785 32.380 33.547 13.902 37.405
26 59.103 59.500 58.951 31.072 48.056
27 52.788 52.761 53.765 27.376 50.620
28 31.438 35.353 42.132 24.265 35.064
29 49.644 58.416 55.175 22.876 46.382
30 60.66 62.666 60.775 17.331 41.684
31 46.893 55.589 56.524 08.225 36.911
32 43.441 52.036 39.259 05.521 27.801
33 26.652 27.360 29.232 08.681 24.434
34 22.57 33.804 21.135 04.193 09.942
35 57.014 54.759 44.433 10.543 33.053
36 66.966 72.630 59.154 19.847 49.780
37 62.656 78.668 46.103 17.065 30.190

high upper semivariance and the mean value in

criteria 1, 2, 3 and 5.

Figure ?? shows results of the upper semivari-

ance projects under five criteria.

Figure ?? shows results of the lower semivari-

ance projects under five criteria.

Figure ?? shows results of the mean value

projects under five criteria.

6 Conclusion

In this paper, a novel fuzzy project selection

model based on risk oriented DEA is proposed.

Indeed, a model of project evaluation as well as

a model of project portfolio selection were pre-

sented. In this approach, proposed a new index as

an opportunity factor and desirable risk. Also, in-

troduces downside risk as an undesirable risk. In

other words, the proposed model includes down-
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Table 6: Results of model (14) with γ Level set

project 0.2 0.4 0.6 0.8 1

1 0 1 0 1 0
2 0 0 1 1 1
3 0 0 0 1 1
4 0 0 1 1 0
5 0 1 0 0 1
6 1 1 1 1 1
7 0 0 1 1 1
8 1 1 1 1 0
9 1 1 1 1 1
10 0 0 1 0 0
11 0 0 0 0 0
12 0 0 0 0 0
13 1 0 0 0 0
14 1 0 0 1 1
15 1 1 1 0 0
16 0 0 0 0 0
17 0 0 0 0 0

18 0 0 0 0 0
19 0 0 1 0 0
20 0 0 0 0 0
21 1 1 0 1 1
22 1 1 1 1 1
23 1 1 0 0 1
24 1 1 1 1 1
25 0 1 0 0 0
26 1 0 0 0 0
27 0 0 0 0 0
28 0 1 0 0 0
29 0 0 0 0 1
30 1 0 1 0 0
31 0 0 0 0 0
32 0 0 0 0 0
33 0 0 0 0 0
34 0 0 0 0 0
35 0 0 0 0 0
36 0 0 0 0 0
37 0 0 0 0 0

side risk-return index and upper risk-return in-

dex. To comprehend the impact of risk on project

selection, it is necessary to consider the risk of

selecting the project and the risk of not doing it.

Because, avoiding risk dont should to deprive or-

ganization of opportunities. Therefore, decision

makers are able to get more information of the

project portfolio selection and can to make bet-

ter decisions. In the existing literature, there are

no studies in this field. Also, the proposed model

can be employed as an expert and analyzer sys-

tem for project portfolio selection. It should be

noted that project selection is a problem of deci-

sion making under uncertainty. Hence, the model

considers uncertain factors. Moreover, the model

was presented in the form of fuzzy linear pro-

graming. The proposed method provides a gen-

eral framework, in order to increasing, decreasing

indices as well as controlling the resource, unlike

the existing models, there is no need for sepa-
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rate modeling or multi- objective. For further

research, the proposed model could be applied in

decision oriented systems and stock markets that

could be an interesting research direction.
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