Optimization of Soil washing process in the presence of Tween 80 and EDTA compounds in removing PAHs and Cadmium contaminants from contaminated soil by method BBD
Subject Areas : soil pollutionMotahareh Harati 1 , roshanak rezaei kalantary 2
1 - Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
2 - Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran. *(Corresponding Authors)
Keywords: Tween 80, EDTA, Cadmium, Phenanthrene, Soil washing,
Abstract :
Background and Objective: Pollution caused by petroleum compounds (PAHs) and heavy metals due to their properties Cumulative and High toxicity Causing major environmental problems. These compounds, although detected in air and water, are the final and main receptive soil. Soil washing process using surfactants is a high-performance physicochemical technology for the removal of phenanthrene and cadmium from the soil environment and transferring them to the aqueous phase. Method: In this study, the efficiency of the process with the BBD method, with RSM, was designed to optimizing parameters such as surfactant concentration in the range 1000,1500 and 2000 mg/L, washing Time 2,12, 24 hours with L/S 10, 20 and 30 ml/g. To contaminated soil samples were added high concentrations Phenanthrene (500 mg/kg) and Cadmium (80 mg/kg), surfactant Tween 80 and EDTA. Findings: The final concentration of Phenanthrene and Cadmium was measured by HPLC and atomic absorption spectrometry (ASS). The results showed that the efficiency of the process under optimal conditions for the separation of 76% Phenanthrene and 81% Cadmium in separate concentrations of Tween 80 and EDTA was reached in 2000 mg/L, L/S 30 ml/g (v/w), washing time 2 hours. Surfactant concentration was the most influential variable in this regard (p< 0.0001). Discussion & Conclusion: The separation of phenanthrene and Cadmium from the soil through the help of surfactants is an effective technique for remediation of contaminated soil.
- Abdel-Shafy HI., Mansour MSM., et al, 2016, "A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation", Egyptian Journal of Petroleum, 25(1),107–23.
- Aryal M., Kyriakides M., 2013, "Biodegradation and Kinetics of Phenanthrene and Pyrene in the Presence of Nonionic Surfactants by Arthrobacter Strain Sphe3", Water, Air, & Soil Pollution, 224(8), 1-10.
- Bautista LF., Morales G., Sanz R, 2015, "Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15", Chemosphere, 136, 273–80.
- Bourceret A., Cébron A., Tisserant E., et al, 2016, "The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters", Microbial Ecology. 71(3), 711-724.
- Chen M., Xu P., Zeng G., et al, 2015, "Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs", Biotechnol Advance, 33(6), 745-755.
- Cheng M., Zeng G., Huang D., Lai C., et al, 2016, "Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review", Chemical Engineering Journal, 284(4), 582-598.
- Diaz M., Mora V., Pedrozo F., Nichela D., Baffico G, 2014, "Evaluation of native acidophilic algae species as potential indicators of polycyclic aromatic hydrocarbon (PAH) soil contamination", Journal of Applied Phycology, 27(1), 321–5.
- Jin H., Zhou W., Zhu L, 2013, "Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system", Journal of Environmental Sciences (China), 25(7), 1355–61.
- Kuppusamy S., Thavamani P., Megharaj M., Venkateswarlu K., Lee YB., Naidu R, 2016, "Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation", Journal of Hazardous Materials, 317(4),169-179.
- Khalladia R., Benhabilesa O., Bentahara F., Moulai-Mostefa N., 2009. Surfactant remediation of diesel fuel polluted soil, Journal of Hazardous Materials, 164 (9) 1179-1184.
- Lau EV., Gan S., Ng H.K., Poh P.E, 2014, "Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies", Environmental Pollution, 184(7), 640-649.
- Liu S-H., Zeng G-M., Niu Q-U., Liu Y., et al, 2017, "Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review", Bioresource Technology, 224(1), 25-33.
- Peng S., Wu W., Chen. J, 2011, "Removal of PAHs with surfactant-enhanced soil washing: Influencing factors and removal effectiveness", Chemosphere, 82(6), 1173-1177.
- Race M., Marotta R., Fabbricino M., et al, 2016, "Copper and zinc removal from contaminated soils through soil washing process using ethylene-diamine-disuccinic acid as a chelating agent: A modeling investigation", Journal of Environmental Chemical Engineering, 4(3), 2878-2891.
- Rodriguez J., García A., Poznyak T., Chairez I, 2017, "Phenanthrene degradation in soil by ozonation: Effect of morphological and physicochemical properties", Chemosphere, 169(1), 53-61.
- Sayara T., Sarrà M., Sánchez A, 2010, "Optimization and Enhancement of Soil Bioremediation by Composting Using the Experimental Design Technique", Biodegradation, 21(3), 345-356.
- Shiau B.J.B., Brammer J.M., Sabatini D.A., Harwell J.H., Knox R.C, 2003. Recent Development of Low Concentration Surfactant Flushing for NAPL-Impacted Site Remediation and Pollution Prevention, Petroleum Hydrocarbons and Organic Chemicals in Ground Water/Prevention, Assessment, and Remediation Twentieth Annual Conference and Exposition, Costa Mesa, CA.
- Svab M., Kubal M., Müllerova M., Raschman R., 2009. Soil flushing by surfactant solution: Pilot-scale demonstration of complete technology, J. Hazard. Mater., 163 (2) 410-417.
- Strbak L., 2000. In Situ Flushing with Surfactants and Cosolvents, U.S. Environmental Protection Agency, Washington, DC, report.
- Trellu C., Ganzenko O., Papirio S., Pechaud Y., Oturan N., et al, 2016, "Combination of anodic oxidation and biological treatment for the removal of phenanthrene and Tween 80 from soil washing solution", Chemical Engineering Journal, 306(8), 588-596.
- USEPA 1996, "Ultrasonic extraction. Center for environmental research information".
- U.S. Environmental Protection Agency, Cost and Performance Report for LNAPL Characterization and Remediation, 2005, report.
- Wu Q., Geng X, 2015, "Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals", Science of the Total Environment, 506-507(9), 217-225.
- Voglar D., Lestan D, 2013, "Pilot-scale washing of Pb, Zn and Cd contaminated soil using EDTA and process water recycling", Chemosphere, 306(5), 76-82.
- Zhao G., Wang H., Liu G, 2016, "Electrochemical Determination of Trace Cadmium in Soil by a Bismuth Film/Graphene-β-cyclodextrin-Nafion Composite Modified Electrode", International Journal of Electrochemical Science, 11(7), 1840-1851.
_||_
- Abdel-Shafy HI., Mansour MSM., et al, 2016, "A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation", Egyptian Journal of Petroleum, 25(1),107–23.
- Aryal M., Kyriakides M., 2013, "Biodegradation and Kinetics of Phenanthrene and Pyrene in the Presence of Nonionic Surfactants by Arthrobacter Strain Sphe3", Water, Air, & Soil Pollution, 224(8), 1-10.
- Bautista LF., Morales G., Sanz R, 2015, "Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15", Chemosphere, 136, 273–80.
- Bourceret A., Cébron A., Tisserant E., et al, 2016, "The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters", Microbial Ecology. 71(3), 711-724.
- Chen M., Xu P., Zeng G., et al, 2015, "Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs", Biotechnol Advance, 33(6), 745-755.
- Cheng M., Zeng G., Huang D., Lai C., et al, 2016, "Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review", Chemical Engineering Journal, 284(4), 582-598.
- Diaz M., Mora V., Pedrozo F., Nichela D., Baffico G, 2014, "Evaluation of native acidophilic algae species as potential indicators of polycyclic aromatic hydrocarbon (PAH) soil contamination", Journal of Applied Phycology, 27(1), 321–5.
- Jin H., Zhou W., Zhu L, 2013, "Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system", Journal of Environmental Sciences (China), 25(7), 1355–61.
- Kuppusamy S., Thavamani P., Megharaj M., Venkateswarlu K., Lee YB., Naidu R, 2016, "Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation", Journal of Hazardous Materials, 317(4),169-179.
- Khalladia R., Benhabilesa O., Bentahara F., Moulai-Mostefa N., 2009. Surfactant remediation of diesel fuel polluted soil, Journal of Hazardous Materials, 164 (9) 1179-1184.
- Lau EV., Gan S., Ng H.K., Poh P.E, 2014, "Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies", Environmental Pollution, 184(7), 640-649.
- Liu S-H., Zeng G-M., Niu Q-U., Liu Y., et al, 2017, "Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review", Bioresource Technology, 224(1), 25-33.
- Peng S., Wu W., Chen. J, 2011, "Removal of PAHs with surfactant-enhanced soil washing: Influencing factors and removal effectiveness", Chemosphere, 82(6), 1173-1177.
- Race M., Marotta R., Fabbricino M., et al, 2016, "Copper and zinc removal from contaminated soils through soil washing process using ethylene-diamine-disuccinic acid as a chelating agent: A modeling investigation", Journal of Environmental Chemical Engineering, 4(3), 2878-2891.
- Rodriguez J., García A., Poznyak T., Chairez I, 2017, "Phenanthrene degradation in soil by ozonation: Effect of morphological and physicochemical properties", Chemosphere, 169(1), 53-61.
- Sayara T., Sarrà M., Sánchez A, 2010, "Optimization and Enhancement of Soil Bioremediation by Composting Using the Experimental Design Technique", Biodegradation, 21(3), 345-356.
- Shiau B.J.B., Brammer J.M., Sabatini D.A., Harwell J.H., Knox R.C, 2003. Recent Development of Low Concentration Surfactant Flushing for NAPL-Impacted Site Remediation and Pollution Prevention, Petroleum Hydrocarbons and Organic Chemicals in Ground Water/Prevention, Assessment, and Remediation Twentieth Annual Conference and Exposition, Costa Mesa, CA.
- Svab M., Kubal M., Müllerova M., Raschman R., 2009. Soil flushing by surfactant solution: Pilot-scale demonstration of complete technology, J. Hazard. Mater., 163 (2) 410-417.
- Strbak L., 2000. In Situ Flushing with Surfactants and Cosolvents, U.S. Environmental Protection Agency, Washington, DC, report.
- Trellu C., Ganzenko O., Papirio S., Pechaud Y., Oturan N., et al, 2016, "Combination of anodic oxidation and biological treatment for the removal of phenanthrene and Tween 80 from soil washing solution", Chemical Engineering Journal, 306(8), 588-596.
- USEPA 1996, "Ultrasonic extraction. Center for environmental research information".
- U.S. Environmental Protection Agency, Cost and Performance Report for LNAPL Characterization and Remediation, 2005, report.
- Wu Q., Geng X, 2015, "Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals", Science of the Total Environment, 506-507(9), 217-225.
- Voglar D., Lestan D, 2013, "Pilot-scale washing of Pb, Zn and Cd contaminated soil using EDTA and process water recycling", Chemosphere, 306(5), 76-82.
- Zhao G., Wang H., Liu G, 2016, "Electrochemical Determination of Trace Cadmium in Soil by a Bismuth Film/Graphene-β-cyclodextrin-Nafion Composite Modified Electrode", International Journal of Electrochemical Science, 11(7), 1840-1851.