Classification of Groundwater Sustainability Assessment Indicators in Aquifers of Arid and Semi-Arid Regions
Subject Areas : Water resources managementSusan Hayeri Yazdi 1 , Maryam Robati 2 , Saeideh Samani 3 , Fariba Zamani Hargalani 4
1 - PhD Student in Environmental Science and Engineering, Faculty of Natural Resources and Environment, Azad University, Tehran Science and Research Branch.
2 - Assistant Professor, Department of Environmental Science and Engineering, Faculty of Natural Resources and Environment, Islamic Azad University, Science and Research Branch, Tehran, Iran.
3 - Assistant Professor, Department of Water Resources Study and Research, Water Research Institute, Tehran, Iran.
4 - Assistant Professor, Department of Environmental Science and Engineering, Faculty of Natural Resources and Environment, Islamic Azad University, Science and Research Branch, Tehran, Iran.
Keywords: water poverty index, Sustainability assessment, social indicators, Fresh water,
Abstract :
Background and Aim: Considering the increasing dependence of humans on fresh water, especially groundwater, which is the most important source of water supply in arid and semi-arid regions, assessing the sustainability of aquifers is crucial. In this regard, assessment indicators are used, which usually do not have a clear boundary between the classification of indicators and they overlap with each other in different fields such as economy, society and environment. Also, researchers usually rely on a number of indicators that can be measured for their case study. Due to this lack of data, in this article, an attempt has been made to collect and categorize various indicators that have been used to assess groundwater in aquifers in arid and semi-arid regions of the world.Method: This research has been a literature review of previous articles and studies in the world in the field of assessing the sustainability of groundwater based on different indicators. The course of movement and progress of these indicators in articles and their classification in environmental, social, economic and institutional categories has been in the framework of this research. Also, the composite indicators that have been prepared for topics under the sustainability subcategory, such as the water poverty index, have been considered in this research. The water poverty indicator is a subset of the competition criterion and a social indicator. This indicator has been proposed as a subset of the water competition criterion, which is an important indicator for measuring the level of poverty caused by water scarcity, especially in arid and semi-arid lands such as significant parts of West Asian countries. In other words, this indicator connects water and poverty. Results: The results indicate that the environmental indicators with a share of 63% have the highest number among the articles and physical indicators include more than half of the environmental indicators. After that, economic indicators with 18%, social indicators with 14% and institutional indicators with 7% are in the next ranks in terms of numbers, which shows the attention of experts to the importance of the environment and economy on the sustainability of aquifers.Conclusion: Although social indicators comprise only 13% of all indicators, but due to their importance and weight, they need more studying. Also, these types of indicators are mainly dependent on the case study, so using the studies of sociologists is a great help for real investigation and it will aim at the sustainability of aquifers. Also, due to the fact that sustainability evaluation is an interdisciplinary field, the selection of its indicators needs strong theoretical foundations, therefore, team work with the presence of different experts will increase the quality of the study results. Considering that the institutional indicators mainly play the role of the answer in the issue of aquifer sustainability, therefore, compiling institutional indicators in the future and including a logical weight for these indicators during the assessment of sustainability is very important in raising the quality of the assessment. Institutional indicators are mainly related to governance, and considering that the development approach is to reduce the concentration of management from top to bottom, there are fewer institutional indicators and the focus is on other indicators.
Ahmed, S. I., Sonkar, A. K., Kishore, N., Varshney, R., & Jhariya, D. (2022). Hydrogeochemical Characterization and Qualitative Assessment of Groundwater in Jampali Coal Mining Area, Chhattisgarh, India. Journal of The Institution of Engineers (India): Series A, 103(4), 1109-1125.
Akbar, H., Nilsalab, P., Silalertruksa, T., & Gheewala, S. H. (2022). Comprehensive review of groundwater scarcity, stress and sustainability index-based assessment. Groundwater for Sustainable Development, 18, 100782.
Besser, H. and L. Dhaouadi (2022). "An overview of groundwater resources evolution in North Africa: sustainability assessment of the CI aquifer under natural and anthropogenic constraints." Meteorology Hydrology and Water Management. Research and Operational Applications 10.
Bui, N. T., Kawamura, A., Amaguchi, H., Du BUI, D., & Truong, N. T. (2016). Environmental sustainability assessment of groundwater resources in Hanoi, Vietnam by a simple AHP approach. 土木学会論文集 G
(環境), 72(5), I_137-I_146.
Bui, N. T., Kawamura, A., Amaguchi, H., Du Bui, D., Truong, N. T., & Nakagawa, K. (2018). Social sustainability assessment of groundwater resources: A case study of Hanoi, Vietnam. Ecological indicators, 93, 1034-1042.
Bui, N. T., Kawamura, A., Du Bui, D., Amaguchi, H., Bui, D. D., Truong, N. T.,... & Nguyen, C. T. (2019). Groundwater sustainability assessment framework: A demonstration of environmental sustainability index for Hanoi, Vietnam. Journal of environmental management, 241, 479-487.
Ducci, D., & Sellerino, M. (2022). A modified AVI model for groundwater vulnerability mapping: Case studies in Southern Italy. Water, 14(2), 248
Duran-Llacer, I., Arumí, J. L., Arriagada, L., Aguayo, M., Rojas, O., González-Rodríguez, L.,... & Singh, S. K. (2022). A new method to map groundwater-dependent ecosystem zones in semi-arid environments: A case study in Chile. Science of The Total Environment, 816, 151528.
Fabian, C. L., Ibañez, J. W., Prieto, F. S., & Camargo, C. C. (2018). Groundwater Sustainability Assessment in Small Islands: the case study of san andres in the caribbean sea.
Fahim, A. K. F., Kamal, A. M., & Shahid, S. (2023). Spatiotemporal change in groundwater sustainability of Bangladesh and its major causes. Stochastic Environmental Research and Risk Assessment, 37(2), 665-680.
Fang, Z., X. Ding and H. Gao (2022). "Local-Scale Groundwater Sustainability Assessment Based on the Response to Groundwater Mining (MGSI): A Case Study of Da’an City, Jilin Province, China." Sustainability 14(9): 5618.
Gordon, J. R. C.-E. (2008). Handbook on constructing composite indicators: methodology and user guide, OECD publishing.
Gordon, C. C. o. M. o. t. (2017). "GROUNDWATER SUSTAINABILITY ASSESSMENT APPROACH: GUIDANCE FOR APPLICATION."
Hosseini, S. M., Parizi, E., Ataie-Ashtiani, B., & Simmons, C. T. (2019). Assessment of sustainable groundwater resources management using integrated environmental index: Case studies across Iran. Science of the total environment, 676, 792-810.
Iddrisu, U. F., Mbatchou, V. C., Armah, E. K., & Amedorme, B. S. (2023). Groundwater quality assessment for sustainable irrigation in Nanton district, Ghana. Water Practice and Technology.
Ladi, T., A. Mahmoudpour and A. Sharifi (2021). "Assessing impacts of the water poverty index components on the human development index in Iran." Habitat International 113: 102375.
Mahdavi, T., & Hosseini, S. A. (2019). Aquifers Sustainability assessment by Integrated Groundwater Footprint Indicator Case Study: East Azerbaijan Province. Iran-Water Resources Research, 15(4), 438-452. [in Persian]
Majidipour, F., Najafi, S. M. B., Taheri, K., Fathollahi, J., & Missimer, T. M. (2021). Index-based groundwater sustainability assessment in the socio-economic context: a case study in the Western Iran. Environmental Management, 67, 648-666.
Maria, R. (2018, February). Comparative studies of groundwater vulnerability assessment. In IOP Conference Series: Earth and Environmental Science (Vol. 118, No. 1, p. 012018). IOP Publishing.
Martinez, S., O. Escolero and M. Perevochtchikova (2015). "A comprehensive approach for the assessment of shared aquifers: the case of Mexico City." Sustainable Water Resources Management 1(2): 111-123.
Milewski, A., K. Lezzaik and R. Rotz (2020). "Sensitivity analysis of the groundwater risk index in the Middle East and North Africa region." Environmental Processes 7(1): 53-71.
Panahi, E., Bafkar, A., & Hafezparast, M. (2017). Assessment of management alternatives for maintaining watershed sustainability in the climate scenarios. Iran-Water Resources Research, 13(1), 139-152. [in Persian]
Pandey, V. P., Shrestha, S., Chapagain, S. K., & Kazama, F. (2011). A framework for measuring groundwater sustainability. Environmental Science & Policy, 14(4), 396-407.
Pires, A., Morato, J., Peixoto, H., Botero, V., Zuluaga, L., & Figueroa, A. (2017). Sustainability Assessment of indicators for integrated water resources management. Science of the total environment, 578, 139-147.
Pissourios, I. A. (2013). "An interdisciplinary study on indicators: A comparative review of quality-of-life, macroeconomic, environmental, welfare and sustainability indicators." Ecological indicators 34: 420-427.
Rashid, A., Ayub, M., Ullah, Z., Ali, A., Sardar, T., Iqbal, J.,... & Khan, S. (2023). Groundwater Quality, Health Risk Assessment, and Source Distribution of Heavy Metals Contamination around Chromite Mines: Application of GIS, Sustainable Groundwater Management, Geostatistics, PCAMLR, and PMF Receptor Model. International Journal of Environmental Research and Public Health, 20(3), 2113.
Rukmana, B. T. S., Bargawa, W. S., & Cahyadi, T. A. (2020, March). Assessment of groundwater vulnerability using GOD method. In IOP Conference Series: Earth and Environmental Science (Vol. 477, No. 1, p. 012020). IOP Publishing
Sadeghi, S. Sadoddin, A. Asadi, O. Hazbavi, Z. Zare Karizi, A. Moayeri, M. (2020). “watershed Health and Sustainability (Principles, Approaches and Assessment Methods)”. Trbiat Modares University Press. pub.modares.ac.ir [in Persian]
Sadek, M. and K. Hagagg (2020). "A Novel Groundwater Sustainability Index using AHP/GIS Approach." International Journal of Research in Environmental Science (IJRES) 6(4): 28-40.
Samani, S. (2021). "Analyzing the groundwater resources sustainability management plan in Iran through comparative studies." Groundwater for Sustainable Development 12: 100521.
Samani, S. (2021). "Assessment of groundwater sustainability and management plan formulations through the integration of hydrogeological, environmental, social, economic and policy indices." Groundwater for Sustainable Development.
Singh, A. P. and P. Bhakar (2021). "Development of groundwater sustainability index: a case study of western arid region of Rajasthan, India." Environment, Development and Sustainability 23(2): 1844-1868.
Uddin, M. G., Nash, S., & Olbert, A. I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218.
Vrba, J. (2007). Groundwater Resources Sustainability Indicators.
Water, U. N. (2021). Progress on change in water-use efficiency: Global status and acceleration needs for SDG indicator 6.4. 1, 2021. Food & Agriculture Org..
Xiong, H., Wang, Y., Guo, X., Han, J., Ma, C., & Zhang, X. (2022). Current status and future challenges of groundwater vulnerability assessment: A bibliometric analysis. Journal of Hydrology, 128694.
Zarei, B., Parizi, E., Hosseini, S. M., & Ataie-Ashtiani, B. (2022). A multifaceted quantitative index for sustainability assessment of groundwater management: application for aquifers around Iran. Water International, 47(3), 338-360.
Zhou, H., Dai, M., Wei, M., & Luo, Z. (2023). Quantitative Assessment of Shallow Groundwater Sustainability in North China Plain. Remote Sensing, 15(2), 474
_||_