Simulation of growth and yield and evaluation of rice production productivity under irrigation management and planting date using Aquacrop model
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsPooya Aalaee Bazkiaee 1 , Behnam Kamkar 2 , Ebrahim Amiri 3 , Hossein Kazemi 4 , Mojtaba Rezaei 5 , Soheil Akbarzadeh 6
1 - PhD student, Department of Agriculture, Plant production College, Gorgan University of Agricultural Sciences and Natural Resources, Iran.
2 - Prof., Agronomy Dept., Gorgan University of Agricultural Sciences and Natural Resources & Agrotechnology Dept. Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
3 - Department of Water Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
4 - Associate. Prof., Department of Agriculture, Plant production College, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
5 - Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.
6 - Former undergraduate student, Department of Agriculture, Plant production College, Gorgan University of Agricultural Sciences and Natural Resources, Iran.
Keywords: water productivity, Planting date, Rice, Aquacropmodel, irrigation,
Abstract :
In order to evaluate the Aquacrop model and investigate the productivity of rice production under irrigation management and planting date, a split plot experiment based on a randomized complete blocks design with three replications was carried out on a local cultivar (Hashemi) in Rice Research Institute of Iran, in Rasht during 2016-2017. Irrigation interval was considered as the main factor in four levels including full flooding, 5, 10 and 15 days irrigation intervals, and transplanting date was assigned to subplots at three levels (April, 21st, May, 11th and May, 31st). Simulated and observed values of grain yield and biological yield were evaluated based on coefficient of determination, T-test, root mean square error (RMSE), Model efficiency (EF), mean bias error (MBE) and normalized root mean square error (RMSEn). The results showed that normalized root mean square error of the grain yield and biological yield were 9% and 5%, respectively. Based on the productivity and reduction in the yield of rice, flooding irrigation was the most efficient in April, 21th planting date. According to the correlation coefficient upper than 0.7 and Model efficiency upper than 0.6, the AquaCrop model had a good accuracy in simulating grain yield and biological yield, therefore AquaCrop model can be used to support the results of experiments under irrigation management conditions and different planting dates.
ابراهیمی پاک، ن. ع.، اگدرنژاد، ا.، تافته، ا.، خدادادی دهکردی، د. 1397 .بررسی کارایی مدل AquaCrop در شبیهسازی عملکرد گیاه کلزا تحت سناریوهای کم آبیاری در دشت قزوین. تحقیقات آب و خاک ایران، 49(5 :)1003-1015.
آمارنامه کشاورزی. 1396 .جلد اول: محصوالت زراعی. 1394-95 .دفتر آمار و فناوری اطالعات، معاونت امور برنامه ریزی و اقتصادی. وزارت جهاد کشاورزی. 90 صفحه.
امیری، ا. 1390 .شبیه سازی رشد و نمو برنج تحت شرایط محدودیت آبیاری. علوم زیستی واحد الهیجان، 5(4 :)1-13.
امیری، ا.، رضویپور، ت. و بنایان، م. 1390 .ارزیابی عملکرد و بهرهوری آب در برنج تحت شرایط مختلف آبیاری و فاصله کاشت با از استفاده از مدل ORYZA2000. تولید گیاهان زراعی، 4 (3): 1- 19.
پازوکی، ع.، کریمی، م. و فوالدی، ع. 1389 .بررسی اثر تاریخهای کاشت بر عملکرد اکوتیپهای گیاه زعفران (.L sativus Crocus) در منطقه نطنز. فیزیولوژی گیاهان زراعی. 2(8:)3-12.
حسنی پاک، ع. ا. 1386 .زمینآمار (ژئواستاتیک). انتشارات دانشگاه تهران. 314 ص.
ذوالفقاری، ح.، فرهادی، ب. و رحیمی، ح. 1395 .توانهای اقلیمی ایران برای کاشت سویا. جغرافیا و برنامهریزی، 20(56)89-105.
سلطانی، ا.، رحیم زاده خویی، ف.، قاسمی گلعذانی، ک. و مقدم، م. 1378 .CICER یک مدل رایانهای برای شبیهسازی رشد و عملکرد نخود. دانش کشاورزی، 9(3): 89-106.
ضیایی، ، بابازاده، ح.، عباسی، ف.، کاوه، ف. 1393 .بررسی عملکرد مدلهای AquaCrop و CERES-Maize در برآورد اجزای بیلان آب خاک و عملکرد ذرت. تحقیقات آب و خاک ایران، 45(4): 435-445.
علیزاده، ح. ع.، عباسی، ف. 1396. بررسی واکنش عملکرد ذرت دانهای به سطوح مختلف آب و کود مصرفی با استفاده از مدل AquaCrop. علوم مهندسی آبیاری، 40(2): 119-134.
کمالی، ب.، رمرانی اعتدالی، ه.، ستوده نیا، ع. 1395 .تعیین زمان مناسب کاشت و آبیاری تکمیلی عدس دیم در دشت قزوین با استفاده از مدل AquaCrop. مجله آبیاری و زهکشی ایران، 10(5): 613-621.
Akumaga, U., Tarhule, A., and Yusuf, A. A. 2017. Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agricultural and forest meteorology, 232: 225-234.
Amiri, E., Razavipour, T., Farid, A., and Bannayan, M. 2011. Effects of crop density and irrigation management on water productivity of rice production in Northern Iran: Field and Modeling Approach. Communications in Soil Science and Plant Analysis, 42 (17): 2085-2099.
Araya, A., Habtu, S., Hadgu, K. M., Kebede, A., and Dejene, T. 2010. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 97(11): 1838-1846.
Belder, P., Bouman, B.A.M. and Spiertz, J.H.J. 2007. Exploring option for water savings in lowland rice using a modeling approach. Agricultural Systems, 92: 91–114.
Bouman, B.A.M, and H.H. Van Laar. 2006. .Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, (87): 249–273.
Brar, S. K., Mahal, S. S., Brar, A. S., Vashist, K. K., Sharma, N., and Buttar, G. S. 2012. Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India. Agricultural water management, 115:, 217-222.
Chahal, G.B.S., Sood, A., Jalota, S.K., Choudhury, B.U., Sharma, P.K. 2007. Yield, evapotranspiration and water productivity of rice–wheat system in Punjab (India) as influenced by transplanting date of rice and weather parameters. Agricultural Water Management, 88: 14–22.
FAO. 2016. Food and Agricultural Organization of the United Nations (sited in: http://www,fao.org/index_en.htm/, 11/4/2018.
Geerts, S., Raes, D., Garcia, M., Taboada, C., Miranda, R., Cusicanqui, J., Mhizha, T., and Vacher, J. 2008. Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano, Agricultural Water Management, 96: 1652-1658.
Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., and Fereres, E. 2009. AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy, 101(3): 448-459.
Jabran, K., Ullah, E., Hussain, M., Farooq, M., Haider, N., and Chauhan, B. S. 2015. Water saving, water productivity and yield outputs of fine-grain rice cultivars under conventional and water-saving rice production systems. Experimental agriculture, 51(4): 567-581.
Jin, X., Li, Z., Nie, C., Xu, X., Feng, H., Guo, W., and Wang, J. 2018. Parameter sensitivity analysis of the AquaCrop model based on extended fourier amplitude sensitivity under different agro-meteorological conditions and application. Field Crops Research, 226: 1-15.
Li, J., Song, J., Li, M., Shang, S., Mao, X., Yang, J., & Adeloye, A. J. (2018). Optimization of irrigation scheduling for spring wheat based on simulation-optimization model under uncertainty. Agricultural water management, 208: 245-260.
Liu, Y., Yang, H. S., Li, J. S., Li, Y. F. and Yan, H. J. 2018. Estimation of irrigation requirements for dripirrigated maize in a subhumid climate. Journal of integrative agriculture, 17(3), 1-7.
Mahajan, G., Bharaj, T. S., and Timsina, J. 2009. Yield and water productivity of rice as affected by time of transplanting in Punjab, India. agricultural water management, 96(3): 525-532.
Nyakudya, I. W., and Stroosnijder, L. 2014. Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop. Agricultural Water Management, 146: 280-296.
Raes, D., Steduto, P., Hsiao, T.C. and Fereres, E. 2009. AquaCrop-The FAO crop model for predicting yield response to water: II. Main algorithms and software description. Agronomy: 101:438–447.
Raes, D., Steduto, P., Hsiao, T.C. and Fereres, E. 2012. Reference manual AquaCrop, FAO, Land and Water Division, Rome, Italy.
Ran, H., Kang, S., Li, F., Du, T., Tong, L., Li, S., Li, S., Ding, R. and Zhang, X. 2018. Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agricultural Water Management, 203: 438-450.
Rinaldi, M., N.Losavio and Z .Flagella. 2003. Evaluation of OIL CROP-SUN model for sun flower in southern Italy. Agricultural Systems, 78:17-30.
Sekyi-Annan, E., Tischbein, B., Diekkrüger, B. and Khamzina, A. 2018. Performance evaluation of reservoirbased irrigation schemes in the Upper East region of Ghana. Agricultural Water Management, 202, 134-145.
Singh, M. C., Jain, A. K., and Jalota, S. K. 2017. Impact of Transplanting Date and Irrigation Scheduling on Water Balance, Water Productivity and Soil Moisture Movement. Journal of Agricultural Engineering, 54(1): 28-32.
Singh, R., Van Dam, J.C. and Feddes, R.A. 2006. Water productivity analysis of irrigated crops in Sirsa district, India. Agricultural Water Management, 82: 253-278.
Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E. 2009. AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy, 101:426–437.
Tan, S., Wang, Q., Zhang, J., Chen, Y., Shan, Y., and Xu, D. 2018. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agricultural Water Management, 196: 99-113.
Wang, X., Lu, W., Jun Xu, Y., Zhang, G., Qu, W., and Cheng, W. 2016. The positive impacts of irrigation schedules on rice yield and water consumption: synergies in Jilin Province, Northeast China. International journal of agricultural sustainability, 14(1): 1-12.
_||_