Stability of the seventh-order functional Equations in the β-Gaussian space
Subject Areas : StatisticsN. Ghafoori Adl 1 , D. Ebrahimi Bagha 2 , M. S. Asgari 3 , M. Azhini 4
1 - ph. D. Student, Department of Pure Mathematics (Mathematical Analysis), Faculty of Basic Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
2 - Associate Professor, Department of Mathematics, Faculty of Science,
Central Tehran Branch, Islamic Azad University, Tehran, Iran.
3 - Associate Professor, Department of Mathematics, Faculty of Science,
Central Tehran Branch, Islamic Azad University, Tehran, Iran.
4 - Assistant Professor, Department of Pure Mathematics (Mathematical Analysis), Faculty of Basic Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
Keywords: معادلات تابعی, پایداری نرم β-گاوسی, (β, p)-قضایای باناخ,
Abstract :
The purpose of this paper is to solve the seventh-order functional equation as follows: --------------------------- Next, we study the stability of this type of functional equation. Clearly, the function ---------- holds in this type functional equation. Also, we prove Hyers-Ulam stability for this type functional equation in the β-Gaussian Banach space.
[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2: 64-66 (1950).
[2] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Vol. 1, Amer. Math. Soc. Colloquium Publications, 48. Amer. Math. Soc. Providence, RI, 2000.
[3] A. Bodaghi, Stability of a quartic functional equation, The Scientific World Journal. Vol. 2014, 9 pages, Article ID 752146.
[4] A. Bodaghi, S. M. Moosavi, H. Rahimi, The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara, 59: 235-250 (2013).
[5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62: 59-64 (1992).
[6] M. Eshaghi Gordji, A. Bodaghi, On the Hyers-Ulam-Rassias stability problem for quadratic functional equations East. J. Approx. 16:123-130 (2010).
[7] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (3): 431-434 (1991).
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA. 27: 222-224 (1941).
[9] K. W. Jun, H. M. Kim, On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces, J. Math. Anal. Appl. 332 (2): 1335-1350 (2007).
[10] K. W. Jun. H. M. Kim, The generalized Hyers-Ulam-Russias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2):867-878 (2002).
[11] C. Park, J. Cui, M. Eshaghi Gordji, Orthogonality and quintic functional equations. Acta Math. Sinica English Series. 29: 1381-1390 (2013).
[12] J. M. Rassias, Solution of the Ulam stability problem for cubic mapping, Glasnik Matematicki Ser III. 36 (56): 63-72 (2001).
[13] J. M. Rassias, Solution of the Ulam stability problem for quartic mapping, Glasnik Matematicki Ser III. 34 (2): 243-252 (1999).
[14] Th. M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (2): 297-300 (1978).
[15] S. Rolewicz, Metric linear spaces Second Edition. PWN-Polish Scientific Publishers, Warsaw. D. Reidel Publishing Co., Dordrecht, (1984).
[16] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53: 113-129 (1983).
[17] J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces. Ann. Polon. Math. 83: 243-255 (2004).
[18] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Ed., Wiley, New York, (1940).
[19] T. Z. Xu, M. Rassias, W. X. Xu, A generalized mixed quadratic-quartic functional equation, Bulletin Malay. Math. Sci. Soc. 35 (3): 633-649 (2012).
[20] T. Z. Xu, J. M. Rassias, M. J. Rassias, W. X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces. J. Inequal. Appl. Article ID 423231: 23 pages (2010).