An alternative proof for a characterization of inner product spaces
Subject Areas : Analyze
1 - Assistant Professor, Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran.
Keywords: تعامد برکف-جیمز, فضای ضرب داخلی, تعامد, تعامد کارلسون از نوع اِرمیت-آدامار,
Abstract :
The most geometric properties of inner product spaces like strict convexity and smoothness my fail to hold in a general normed linear spaces. Also, some main properties of the orthogonality in inner product spaces do not always carry over to generalized orthogonalities. Taking these into account different types of orthogonality relations provide a good frame for studying the geometric properties of normed linear spaces.In this paper, we give a characterization of inner product spaces using the notion of Hermite–Hadamard type of Carlsson’s orthogonality in normed linear spaces. First, we provide some more results about the existence property of this orthogonality. Next, we prove that Hermite-Hadamard type of Carlsson’s orthogonality is additive in a normed linear space X if and only if X is an inner product space. Our approach to prove this fact is using the relationship between Birkhoff-James orthogonality and the Gateaux differentiability of the norm of normed linear spaces.
[1] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1 (2) (1935), 169–172.
[2] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans Amer. Math. Soc., 61 (2) (1947), 265–292.
[3] R. C. James, Orthogonality in normed linear spaces, Duke Math. J., 12 (2) (1945), 291–302.
[4] S. O. Carlsson, Orthogonality in normed linear spaces, Ark. Mat., 4 (1962), 297–318.
[5] مهدی دهقانی ، فضاهای ضرب داخلی، از اتحاد متوازی الاضلاع تا سه گانه جیمز، فرهنگ و اندیشه ریاضی، 1399، سال ٣٩، (شمارۀ ۶٧) پاییز و زمستان ١٣٩٩ ، صص. ١٠٧ تا 123.
[6] J. Alonso, C. Beníitez, Orthogonality in normed linear spaces: a survey. Part I: main properties, Extracta Math., 3, (1988), 1–15.
[7] J. Alonso, C. Beníitez, Orthogonality in normed linear spaces: a survey. II. Relations between main orthogonalities, Extracta Math., 4, no. 3, (1989), 121–131.
[8] M. Dehghani, M. Abed and R. Jahanipur, A generalized orthogonality relation via norm derivatives in real normed linear spaces, Aequat. Math., 93 (2019), 651–667.
[9] H. Mazaheri, S. M. Moshtaghioun, The orthogonality in the vector spaces, Bull. Iran. Math., Soc., 35, (2009), 119–127.
[10] A. Zamani, M. Dehghani, (2019) On Exact and Approximate Orthogonalities Based on Norm Derivatives, In: Brzdęk J., Popa D., Rassias T. (eds) Ulam Type Stability. Springer, Cham.
[11] E. Kikianty, S.S. Dragomir, Hermite-Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl., 13 (1) (2010) 1–32.
[12] S. S. Dragomir, E. Kikianty, Orthogonality connected with integral means and characterizations of inner product spaces, J. Geom. 98 (1) (2010), 33–49.
[13] E. Kikianty, S. S. Dragomir, On Carlsson type orthogonality and characterization of inner product spaces, Filomat, 26 (4) (2012), 859–870.
[14] P. Jordan, J. von Neumann, On inner products in linear metric spaces, Ann. of Math., 36 (2), (1935), 719–723.
[15] M. M. Day, Some characterizations of inner-product spaces, Trans. Amer. Math. Soc., 62, (1947), 320–337.
[16] R. C. James, Inner product in normed linear spaces, Bull. Amer. Math. Soc., 53, (1947), 559–566.
[17] C. Alsina, J. Sikorska and M.S. Tomás, Norm Derivatives and Characterizations of Inner Product Spaces, World Scientific, Hackensack, NJ, 2010.
[18] D. Amir, Characterizations of Inner Product Spaces, Operator Theory: Advances and Applications, vol. 20. Birkhäuser, Basel (1986)
[19] M. Dehghani, A. Zamani, Characterization of real inner product spaces by Hermite-Hadamard type orthogonalities, J. Math. Anal. Appl., 479, (2019), 1364-1382.