Evaluating and classifying the insurers risk in the insurance industry using data envelopment analysis
Subject Areas : StatisticsSeyyedeh Nasim Shobeiri 1 , Mohsen Rostamy- Malkhalifeh 2 , Hashem Nikoomaram 3 , Mohammadreza Miri Lavasani 4
1 - Department of Accounting, Faculty of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Accounting, Faculty of Management and Economics, Science and Research
Branch, Islamic Azad University, Tehran, Iran
4 - Department of HSE Management, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Keywords: طبقهبندی ریسک بیمهگذاران, تحلیل پوششی دادهها, بیمه خودرو, صنعت بیمه,
Abstract :
One of the most important factors for the economic development of countries is the insurance industry.A closer look at the economies of Developed Countries shows that the insurance industry has a significant contribution in the economic development of these countries. The insurance industry needs to accept the risk in order to carry out any insurance activity. In the other word, the insurance companies create tranquillity in the society by accepting the risk. On the other hand, the insurance companies need to access to the powerful risk analysis tools in order to manage the potential risks. Data envelopment analysis (DEA) is one of the most important techniques to identify the risk resources. Hence, data envelopment analysis is widely used in the insurance industry. This study uses the dataset of the car insurance policies of Saman Insurance Company during the years 2018-2019. First, we identify the effective indicators and examine the properties of these indicators to classify them into input and output groups. Finally, we use data envelopment analysis to propose a model for predictionthe risk of insurers (in terms of existence of damage risk or absence of damage risk). This model can be used in the future policies of the insurance company. For example, the insurance companies can use the results of data envelopment analysis to adjust the premiums received from different insurers and increase the satisfaction for insurers and their profitability by creating a rating system based on the insurers 'risk.
[1] Allahyar, M., & Rostamy-Malkhalifeh, M. (2015). Negative data in data envelopment analysis: Efficiency analysis and estimating returns to scale. Computers & Industrial Engineering, 82, 78-81.
[2] Azadeh, A., & Alem, S. M. (2010). A flexible deterministic, stochastic and fuzzy Data Envelopment Analysis approach for supply chain risk and vendor selection problem: Simulation analysis. Expert Systems with Applications, 37(12), 7438-7448.
[3] Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1-13.
[4] Banks, E. (2005). Catastrophic risk: analysis and management. John Wiley & Sons.
[5] Banker, R.D., Charnes, A., Cooper, W.W. (1984), Some models for estimating technical and scale inefficiencies in DEA, Management Science, Vol. 30, pp. 1078-1092.
[6] Bednarek, R., Chalkias, K., & Jarzabkowski, P. (2019). Managing risk as a duality of harm and benefit: a study of organizational risk objects in the global insurance industry. British Journal of Management.
[7] Chapman, R. J. (2011). Simple tools and techniques for enterprise risk management (Vol. 553). John Wiley & Sons.
[8] Charnes, A., Cooper, W.W., Rhodes, E. (1978), Measuring the efficiency of
decision making units, European Journal of Operational Research, Vol. 2, pp. 429-444.
[9] Chopra, S., & Sodhi, M. S. (2004). Supply-chain breakdown. MIT Sloan management review, 46(1), 53-61.
[10] Daykin, C. D. (2004). Financial governance and risk management of social security. Studies28th ISSA General As-sembly, Beijing, 12-18.
[11] Gajek L. And Ostaszewski K. M., (2004), Financial Risk Management for Pension Plans, ELSEVIER.
[12] Grmanová, E., & Strunz, H. (2017). Efficiency of insurance companies: Application of DEA and Tobit analyses. Journal of International Studies, 10(3).
[13] Gharakhani, D., Eshlaghy, A. T., Hafshejani, K. F., Mavi, R. K., & Lotfi, F. H. (2018). Common weights in dynamic network DEA with goal programming approach for performance assessment of insurance companies in Iran. Management Research Review.
[14] Heidinger, D., & Gatzert, N. (2018). Awareness, determinants and value of reputation risk management: Empirical evidence from the banking and insurance industry. Journal of Banking & Finance, 91, 106-118.
[15] Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of operational research, 202(1), 16-24.
[16] Emrouznejad, A., & Yang, G. L. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61, 4-8.
[17] Kaffash, S., Azizi, R., Huang, Y., & Zhu, J. (2020). A survey of data envelopment analysis applications in the insurance industry 1993–2018. European Journal of Operational Research, 284(3), 801-813.
[18] Lamberton, C., Brigo, D., & Hoy, D. (2017). Impact of Robotics, RPA and AI on the insurance industry: challenges and opportunities. Journal of Financial Perspectives, 4(1).
[19] Nourani, M., Devadason, E. S., & Chandran, V. G. R. (2018). Measuring technical efficiency of insurance companies using dynamic network DEA: An intermediation approach. Technological and Economic Development of Economy, 24(5), 1909-1940.
[20] Peykani, P., Mohammadi, E., Rostamy-Malkhalifeh, M., & Hosseinzadeh Lotfi, F. (2019). Fuzzy data envelopment analysis approach for ranking of stocks with an application to Tehran stock exchange. Advances in Mathematical Finance and Applications, 4(1), 31-43.
[21] Rahmani, A., Hosseinzadeh Lotfi, F., Rostamy-Malkhalifeh, M., & Allahviranloo, T. (2016). A new method for defuzzification and ranking of fuzzy numbers based on the statistical beta distribution. Advances in Fuzzy Systems, 2016.
[22] Rezaee, M. J., Yousefi, S., Eshkevari, M., Valipour, M., & Saberi, M. (2020). Risk analysis of health, safety and environment in chemical industry integrating linguistic FMEA, fuzzy inference system and fuzzy DEA. Stochastic Environmental Research and Risk Assessment, 34(1), 201-218.
[23] Roll, Y., Cook, W. D., & Golany, B. (1991). Controlling factor weights in data envelopment analysis. IIE transactions, 23(1), 2-9.
[24] Sandström, A. (2016). Handbook of solvency for actuaries and risk managers: theory and practice. CRC Press.
[25] Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European journal of operational research, 142(1), 16-20.
[26] Seyed Esmaeili, F., & Rostamy-Malkhalifed, M. (2017). Data envelopment analysis with fixed inputs, undesirable outputs and negative data. J. Data Envel. Anal. Decis. Sci, 2017.
[27] Shiu, Y. M. (2020). How does reinsurance and derivatives usage affect financial performance? Evidence from the UK non-life insurance industry. Economic Modelling, 88, 376-385.
[28] Thistlethwaite, J., & Wood, M. O. (2018). Insurance and climate change risk management: rescaling to look beyond the Horizon. British Journal of Management, 29(2), 279-298
[29] Vanany, I., Zailani, S., & Pujawan, N. (2009). Supply chain risk management: literature review and future research. International Journal of Information Systems and Supply Chain Management (IJISSCM), 2(1), 16-33.
[30] Wang, S., & Faber, R. (2006). Enterprise risk management for property-casualty insurance companies. CAS and SOA Jointly Sponsored Research Project.
[31] Wu, B., & Knott, A. M. (2006). Entrepreneurial risk and market entry. Management science, 52(9), 1315-1330.
[32] Yousefi, S., Alizadeh, A., Hayati, J., & Baghery, M. (2018). HSE risk prioritization using robust DEA-FMEA approach with undesirable outputs: A study of automotive parts industry in Iran. Safety science, 102, 144-158.
[33] Zakaria, S. (2017). The use ofFINANCIAL derivatives in measuring bank risk management efficiency: A data envelopment analysis approach. Asian Academy of Management Journal, 22(2).
- ارتشیدار, سجاد، ۱۳۹۸، استفاده از داده کاوی جهت پیش بینی سطوح ریسک بیمه گذاران بیمه بدنه خودرو (مطالعه موردی: یک سازمان بیمهای)،چهارمین کنفرانس ملی مدیریت صنعتی و مهندسی صنایع با تاکید بر پارادایم های منطقه ای و جهانی، تهران، دبیرخانه دائمی کنفرانس.
- بحرالعلوم طباطبایی، علی محمد، نکاتی پیرامون ماهیت ریسکهای بیمه پذیر ،بیمه آسیا، 1386.
- پایروند، حسین، ۱۳۹۸، بررسی ماهیت قرارداد بیمه بدنه اتومبیل و نحوه جبران خسارت آن از منظر فقهی و حقوقی،چهارمین کنفرانس بین المللی دستاوردهای نوین پژوهشی در علوم انسانی و مطالعات اجتماعی و فرهنگی، اصفهان، دانشگاه جامع علمی کاربردی –سازمان همیاری شهرداریها و مرکز توسعه خلاقیت و نوآوری علوم نوین.
- رهنمای رودپشتی، فریدون، ارزیابی عوامل موثر بر خسارت شخص ثالث و ارتباط آنها با ریسک شرکتهای بیمه، فصلنامه صنعت بیمه،24، 1385.
- شهریار، ب.، 1939 .مبانی مدیریت ریسک و نظارت بر توانگری مالی در شرکتهای بیمه. تهران: پژوهشکدۀ بیمه.
- شمس اسفندآبادی, زهرا؛ سها صفایی و میرمهدی سیداصفهانی، ۱۳۹۳، نگاهی سیستمی به تاثیر رضایت مشتری در خرید بیمه بدنه اتومبیل، بیست و یکمین همایش ملی و هفتمین همایش بینالمللی بیمه و توسعه، تهران، پژوهشکده بیمه.
- صحت، سعید، علوی، سیدسعید، ضرورت بکارگیری دانش مدیریت ریسک در بیمه شخص ثالث و تأثیر قانون جدید بیمه شخص ثالث بر ریسک مرتبط با این بیمه، تازههای جهان بیمه، 1385، 144 و 145
- عزیزی, افشین و علیرضا بحیرایی، ۱۳۹۸، محاسبه حق بیمه بهینه و تاثیر آن بر ضریب نفوذ بیمه،بیست و ششمین همایش ملی بیمه و توسعه، تهران، پژوهشکده بیمه.
- قاسمیان ملکشاه, حامد، ۱۳۹۷، ماهیت اجرایی عدالت ترمیمی در صنعت بیمه وسیله نقلیه،دومین کنفرانس ملی پژوهشهای نوین در مدیریت و حقوق، کازرون، دانشگاه آزاد اسلامی واحد کازرون
- محمدی, سمانه و محمد بنار، ۱۳۹۷، بیمه های اتومبیل استفاده محور،بیست و پنجمین همایش ملی بیمه و توسعه، تهران، پژوهشکده بیمه
- مظلومی،نادر،تعریف ریسک،1386،صنعت بیمه،سال اول، ش 2، صص ( 5-9 )
- مظلومی، نادر، قواعد تصمیمگیری در مدیریت ریسک، 1367، پورتال جامع علوم انسانی