A new method for ranking of Z-numbers
Subject Areas : Statistics
1 - Department of Mathematics (Numerical Analysis), Faculty of Mathematical Sciences, Mazandaran University, Babolsar, Iran
2 - Department of Mathematics (Numerical Analysis), Faculty of Mathematical Sciences, Mazandaran University, Babolsar, Iran
Keywords: تابع انتقال خطی, اعداد-Z, رتبه بندی, شبکه عصبی مصنوعی, تابع انتقال غیر خطی,
Abstract :
In this paper we propose a new method for ranking Z- numbers and generalizations. This method is based on the internal structure of the artificial neural network, which suggests that the structure of this network consists of inputs weights and the transfer function linear, nonlinear and sometimes linear and nonlinear. It is shown that the proposed method while possessing the ranking properties for Z -numbers whose components of the limiting part are equal and their confidence interval having the same center of gravity has a more logical ranking than those using the center of gravity. While some of the available methods for Z numbers whose boundaries are equal but not equal to their reliability but have the same focal gravity they rank equally which can not be logical in all cases. Therefore, the proposed method overcomes this problem. In some examples the correctness of the subject is shown. the results are compared with some existing methods.
[1] S. Abbasbandy and T. Hajjari, An improvement on centroid point method for ranking of fuzzy numbers, J. Sci. I.A.U., 78 (2011), 109-119.
[2] T. Allahviranloo and R. Saneifard, Defuzzification method for ranking fuzzy numbers based on center of gravity, Iranian Journal of Fuzzy Systems., 6 (2012), 57-67.
[3] R.A. Alive, A.V. Alizadeh, O.H. Huseynov, The arithmetic of discrete Z-numbers, Inform. Sciences., 290 (2015) 134-155.
[4] R.A. Alive, O.H. Huseynov, R.R. Alive, A.V. Alizadeh, The arithmetic of Z-numbers. Theory and Applications, World Scientific, Singapore, (2015).
[5] R.A. Alive, O.H. Huseynov, and R. Serdaroglu, Ranking of Z-numbers, and its Application in Decision Making. Int. J.
[6] C.h. Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and Systems., 95 (1998) 307-317.
[7] Y. Deng, Z. F. Zhu, Q. Liu, Ranking fuzzy numbers with an area method using radius of gyration, Computers & Mathmetics with Application., 51 (2006), 1127-1136.
[8] S. Ezadi, T. Allahviranloo, New multi-layer method for Z-number ranking using Hyperbolic Tangent function and convex combination, Intelligent Automation Soft Computing., (2017), 1-7.
[9] S. Ezadi, T. Allahviranloo, Two new methods for ranking of Z-numbers based on sigmoid function and sign method, International Journal of Intelligent Systems., (2018), 1-12.
[10] S. Ezadi and T. Allahviranloo, Numerical solution of linear regression based on Z-numbers by improved neural
network, IntellIgent AutomAtIon And Soft ComputIng, (2017) 1-11.
[11] B. Kang, D. WEI, Y. LI and Y. DENG, Decision Making Using Z-numbers under Uncertain Environment, Journal of Computational Information Systems, 7 (2012) 2807–2814.
[12] B. Kang, D. Wei, Y. Li, Y. Deng, A method of converting Z-number to classical fuzzy number, Journal of Information and Computational Scienc., 3 (2012), 703-709.
[13] D. Mohamad, S. A. Shaharani, and N. H. Kamis, A Z-number based decision making procedure with ranking fuzzy numbers method, AIP Conference Proceedings., 1635 (2014) 160–166.
[14] S. Pirmuhammadi, T. Allahviranloo, M. Keshavarz, The parametric form of Z-number and its application
in Z-number initial value Problem, 2017.
[15] Z. X. Wang, Y. J. Liu, Zhi. Ping. Fan, and B. Fenb, “Ranking L-R fuzzy number based on deviation degree”, Information Sciences., 179, (2009) 2070-2077.
[16] R.R. Yager, On choosing between fuzzy subsets. Kybernetes., 9 (1980) 151-154.
[17] R.R. Yager, A procedure for ordering fuzzy subsets of the unit interval, Information Sciences., 24 (1981) 143-161.
[18] R.R. Yager, On Z-Valuations Using
Zadeh’s Z-Numbers, International journal of intelligent systems, 27 (2012) 259–278
[19] L A. Zadeh, A Note on Z-numbers, Information Sciences 181 (2011) 2923–2932.