An Overview of the Concepts, Classifications, and Methods of Population Initialization in Metaheuristic Algorithms
Subject Areas : Software ArchitectureMohammad Hassanzadeh 1 , farshid keynia 2
1 - Department of Computer and Information Technology, Islamic Azad University, Kerman Branch, Kerman, IRAN
2 - Department of Energy, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran;
Keywords:
Abstract :
[1] Q. Li, S.-Y. Liu, and X.-S. Yang, 2020. Influence of initialization on the performance of metaheuristic optimizers, Applied Soft Computing, vol. 91, pp. 106193. https://doi.org/10.1016/j.asoc.2020.106193.
[2] B. Kazimipour, X. Li, and A. K. Qin, 2014, July in 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 2404-2411). IEEE. https://doi.org/10.1109/CEC.2014.6900624.
[3] H. Deng, L. Peng, H. Zhang, B. Yang, and Z. Chen, 2019. Ranking-based biased learning swarm optimizer for large-scale optimization, Information Sciences, vol. 493, pp. 120-137. https://doi.org/10.1016/j.ins.2019.04.037.
[4] Z. Lin, A. Matta, and S. Du, 2021. A Budget Allocation Strategy Minimizing the Sample Set Quantile for Initial Experimental Design, IISE Transactions, vol. 53, no. 1, pp. 39-57. https://doi.org/10.1080/24725854.2020.1748771.
[5] V. de Albuquerque Torreão, and R. Vimieiro, 2018, October in 2018 7th Brazilian Conference on Intelligent Systems (BRACIS) (pp. 25-30). IEEE. https://doi.org/10.1109/BRACIS.2018.00013.
[6] K. Łapa, K. Cpałka, and Y. Hayashi, 2017, June in International Conference on Artificial Intelligence and Soft Computing (pp. 380-393). Springer, Cham. https://doi.org/10.1007/978-3-319-59063-9_34.
[7] N. Henderson, M. de Sá Rêgo, J. Imbiriba, M. de Sá Rêgo, and W. F. Sacco, 2018. Testing the topographical global initialization strategy in the framework of an unconstrained optimization method, Optimization Letters, vol. 12, no. 4, pp. 727-741. https://doi.org/10.1007/s11590-017-1137-6.
[8] Vlašić, M. Ðurasević, and D. Jakobović, 2019. Improving genetic algorithm performance by population initialisation with dispatching rules, Computers & Industrial Engineering, vol. 137, pp. 106030. https://doi.org/10.1016/j.cie.2019.106030.
[9] K. Łapa, K. Cpałka, A. Przybył, and K. Grzanek, 2018, June in International Conference on Artificial Intelligence and Soft Computing (pp. 449-461). Springer. https://doi.org/10.1007/978-3-319-91253-0_42.
[10] M. Richards, and D. Ventura, 2004, July in IEEE Int. Joint. Conf. Neural (pp. 2309-2312). IEEE. https://doi.org/10.1109/IJCNN.2004.1380986.
[11] B. Kazimipour, X. Li, and A. K. Qin, 2014, July in 2014 IEEE Congress on Evolutionary Computation (CEC) (pp. 2585-2592). IEEE. https://doi.org/10.1109/CEC.2014.6900618.
[12] W. Zhao, L. Wang, and Z. Zhang, 2019. Supply-demand-based Optimization: a Novel Economics-inspired Algorithm for Global Optimization., IEEE Access, vol. 7, pp. 73182-73206. https://doi.org/10.1109/ACCESS.2019.2918753.
[13] A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, 2019. Harris hawks optimization: Algorithm and applications., Future Generation Computer Systems, vol. 97, pp. 849-872. https://doi.org/10.1016/j.future.2019.02.028.
[14] H. Bouchekara, 2020. Most Valuable Player Algorithm: a novel optimization algorithm inspired from sport., Operational Research, vol. 20, no. 1, pp. 139–195. https://doi.org/10.1007/s12351-017-0320-y.
[15] Aljarah, M. Mafarja, A. A. Heidari, H. Faris, and S. Mirjalili, 2020. Multi-verse optimizer: theory, literature review, and application in data clustering, Nature-Inspired Optimizers, pp. 123-141: Springer, Cham. https://doi.org/10.1007/978-3-030-12127-3_8.
[16] K. Zervoudakis, and S. Tsafarakis, 2020. A mayfly optimization algorithm, Computers & Industrial Engineering, pp. 106559. https://doi.org/10.1016/j.cie.2020.106559.
[17] Y. Xue, W. Jia, and A. X. Liu, 2019, June in 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1572-1579). IEEE. https://doi.org/10.1109/CEC.2019.8790156.
[18] E. Keedwell, M. Brevilliers, L. Idoumghar, J. Lepagnot, and H. Rakhshani, 2018, October in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 751-756). IEEE. https://doi.org/10.1109/SMC.2018.00136.
[19] A. Yahya, A. Osman, and M. S. El-Bashir, 2017. Rocchio algorithm-based particle initialization mechanism for effective PSO classification of high dimensional data, Swarm and evolutionary computation, vol. 34, pp. 18-32. https://doi.org/10.1016/j.swevo.2016.11.005.
[20] N. Dong, C.-H. Wu, W.-H. Ip, Z.-Q. Chen, C.-Y. Chan, and K.-L. Yung, 2012. An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection, Computers & Mathematics with Applications, vol. 64, no. 6, pp. 1886-1902. https://doi.org/10.1016/j.camwa.2012.03.040.
[21] R. Poli, J. Kennedy, and T. Blackwell, 2007. Particle swarm optimization., Swarm intelligence, vol. 1, no. 1, pp. 33-57. https://doi.org/10.1007/s11721-007-0002-0.
[22] X.-S. Yang, and S. Deb, 2009, December Cuckoo search via Lévy flights., in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India (pp. 210-214). https://doi.org/10.1109/NABIC.2009.5393690.
[23] H. Gandomi, X.-S. Yang, and A. H. Alavi, 2013. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems., Engineering with computers, vol. 29, no. 1, pp. 17-35. https://doi.org/10.1007/s00366-011-0241-y.
[24] R. Storn, and K. Price, 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces., Journal of global optimization, vol. 11, no. 4, pp. 341-359. https://doi.org/10.1023/A:1008202821328.
[25] S. Mirjalili, S. M. Mirjalili, and A. Lewis, 2014. Grey wolf optimizer., Advances in engineering software, vol. 69, pp. 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
[26] Z.-j. Teng, J.-l. Lv, and L.-w. Guo, 2019. An improved hybrid grey wolf optimization algorithm., Soft computing, vol. 23, no. 15, pp. 6617-6631. https://doi.org/10.1007/s00500-018-3310-y.
[27] P. Bratley, and B. L. Fox, 1988. Algorithm 659: Implementing Sobol's quasirandom sequence generator, ACM Transactions on Mathematical Software (TOMS), vol. 14, no. 1, pp. 88-100. https://doi.org/10.1145/42288.214372.
[28] W. F. Sacco, and A. C. Rios-Coelho, 2019. On Initial Populations of Differential Evolution for Practical Optimization Problems, Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering, pp. 53-62: Springer, Cham. https://doi.org/10.1007/978-3-319-96433-1_3.
[29] M. Mitchell, 1995. Genetic algorithms: An overview., Complexity, vol. 1, no. 1, pp. 31-39. https://doi.org/10.1002/cplx.6130010108.
[30] Arauzo-Azofra, J. M. Benitez, and J. L. Castro, 2004,December in Proceedings of the fifth international conference on Recent Advances in Soft Computing (pp. 104-109).
[31] D. Karaboga, and B. Basturk, 2008. On the performance of artificial bee colony (ABC) algorithm., Applied soft computing, vol. 8, no. 1, pp. 687-697. https://doi.org/10.1016/j.asoc.2007.05.007.
[32] P. J. Gaidhane, and M. J. Nigam, 2018. A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of complex systems., Journal of computational science, vol. 27, pp. 284-302. https://doi.org/10.1016/j.jocs.2018.06.008.
[33] D. Simon, 2008. Biogeography-based optimization., IEEE transactions on evolutionary computation, vol. 12, no. 6, pp. 702-713. https://doi.org/10.1109/TEVC.2008.919004.
[34] X. Zhang, Q. Kang, J. Cheng, and X. Wang, 2018. A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer., Applied Soft Computing, vol. 67, pp. 197-214. https://doi.org/10.1016/j.asoc.2018.02.049.
[35] S. Kazemzadeh Azad, 2018. Seeding the initial population with feasible solutions in metaheuristic optimization of steel trusses, Engineering Optimization, vol. 50, no. 1, pp. 89-105. https://doi.org/10.1080/0305215X.2017.1284833.
[36] E. Segredo, B. Paechter, C. Segura, and C. I. González-Vila, 2018. On the comparison of initialisation strategies in differential evolution for large scale optimisation, Optimization Letters, vol. 12, no. 1, pp. 221-234. https://doi.org/10.1007/s11590-017-1107-z.
[37] L. Skanderova, and A. Řehoř, 2014. Comparison of pseudorandom numbers generators and chaotic numbers generators used in differential evolution, Nostradamus 2014: Prediction, Modeling and Analysis of Complex Systems, pp. 111-121: Springer, Cham. https://doi.org/10.1007/978-3-319-07401-6_11.
[38] B. Kazimipour, X. Li, and A. K. Qin, 2013, June in 2013 IEEE Congress on Evolutionary Computation (pp. 2750-2757). IEEE. https://doi.org/10.1109/CEC.2013.6557902.
[39] B. Kazimipour, X. Li, and A. K. Qin, 2014, December in Asia-Pacific Conference on Simulated Evolution and Learning (pp. 479-490). Springer, Cham. https://doi.org/10.1007/978-3-319-13563-2_41.
[40] J. H. Halton, 1960. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik, vol. 2, no. 1, pp. 84-90. https://doi.org/10.1007/BF01386213.
[41] H. Sloan, I. Sloan, and S. Joe, 1994, Lattice methods for multiple integration: Oxford University Press.
[42] L. Rajashekharan, and C. S. Velayutham, 2016. Is differential evolution sensitive to pseudo random number generator quality?–an investigation, Intelligent Systems Technologies and Applications, pp. 305-313: Springer, Cham. https://doi.org/10.1007/978-3-319-23036-8_26.
[43] H. Gandomi, and A. H. Alavi, December 2012. Krill herd: a new bio-inspired optimization algorithm., Communications in nonlinear science and numerical simulation, vol. 17, no. 12, pp. 4831-4845. https://doi.org/10.1016/j.cnsns.2012.05.010.
[44] T. Bradley, J. du Toit, R. Tong, M. Giles, and P. Woodhams, 2011. Parallelization techniques for random number generators, GPU Computing Gems Emerald Edition, pp. 231-246: Elsevier. https://doi.org/10.1016/B978-0-12-384988-5.00016-4.
[45] Y.-W. Leung, and Y. Wang, 2001. An orthogonal genetic algorithm with quantization for global numerical optimization, IEEE Transactions on Evolutionary computation, vol. 5, no. 1, pp. 41-53. https://doi.org/10.1109/4235.910464.
[46] S. Otto, and J. P. Denier, 2005, An introduction to programming and numerical methods in MATLAB.: Springer Science & Business Media. https://doi.org/10.1007/1-84628-133-4.
[47] J. R, 2019. A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS, Journal of Advances in Computer Engineering and Technology, vol. 5, no. 2, pp. 93-106.
[48] N. Damya, and F. Soleimanian Gharehchopogh, 2020. An Improved Bat Algorithm based on Whale Optimization Algorithm for Data Clustering, Journal of Advances in Computer Engineering and Technology, pp. -.
[49] F. Soleimanian Gharehchopogh, and S. Haggi, 2020. An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering, Journal of Advances in Computer Engineering and Technology, vol. 6, no. 2, pp. 79-90.
[50] H. Zheng, Y. Zheng, and P. Li, 2013, May in 2013 IEEE International Symposium on Industrial Electronics (pp. 1-5). IEEE. https://doi.org/10.1109/ISIE.2013.6563726.
[51] L. Peng, Y. Wang, and G. Dai, 2010, December in 2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming (pp. 239-246). IEEE. https://doi.org/10.1109/PAAP.2010.61.
[52] R. Wang, L. Ma, T. Zhang, S. Cheng, and Y. Shi, 2019, June in 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 262-270). IEEE. https://doi.org/10.1109/CEC.2019.8790307.
[53] S. Mahdavi, S. Rahnamayan, and K. Deb, 2018. Opposition based learning: A literature review, Swarm and evolutionary computation, vol. 39, pp. 1-23. https://doi.org/10.1016/j.swevo.2017.09.010.
[54] Q. Xu, L. Wang, N. Wang, X. Hei, and L. Zhao, 2014. A review of opposition-based learning from 2005 to 2012, Engineering Applications of Artificial Intelligence, vol. 29, pp. 1-12. https://doi.org/https://doi.org/10.1016/j.engappai.2013.12.004.
[55] D. Bajer, G. Martinović, and J. Brest, 2016. A population initialization method for evolutionary algorithms based on clustering and Cauchy deviates, Expert Systems with Applications, vol. 60, pp. 294-310. https://doi.org/10.1016/j.eswa.2016.05.009.
[56] M. Ergezer, and D. Simon, 2014. Mathematical and experimental analyses of oppositional algorithms, IEEE transactions on cybernetics, vol. 44, no. 11, pp. 2178-2189. https://doi.org/10.1109/TCYB.2014.2303117.
[57] J. MacQueen, 1967, June in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (pp. 281-297). Oakland, CA, USA.
[58] Q. Du, V. Faber, and M. Gunzburger, 1999. Centroidal Voronoi tessellations: Applications and algorithms, SIAM review, vol. 41, no. 4, pp. 637-676. https://doi.org/10.1137/S0036144599352836.
[59] S. Lloyd, 1982. Least squares quantization in PCM, IEEE transactions on information theory, vol. 28, no. 2, pp. 129-137. https://doi.org/10.1109/TIT.1982.1056489.
[60] F. Barenghi. CHAOS WITH MATLAB, Matlab tutorial, last accessed on January 17 , 2020; http://www.mas.ncl.ac.uk/~ncfb/mat3.pdf.
[61] S. Wessing, 2019. Proper initialization is crucial for the Nelder–Mead simplex search, Optimization Letters, vol. 13, no. 4, pp. 847-856. https://doi.org/10.1007/s11590-018-1284-4.
[62] E. Segredo, E. Lalla-Ruiz, E. Hart, and S. Voß, 2020. A similarity-based neighbourhood search for enhancing the balance exploration–exploitation of differential evolution, Computers & Operations Research, vol. 117, pp. 104871. https://doi.org/10.1016/j.cor.2019.104871.