Evaluation of the effects of constructed rehabilitation dams on maximum and volume of watershed discharge
Subject Areas : Analysis and design of watershed structures and water extractionReza Ghazavi 1 , Ebrahim Omidvar 2
1 - Faculty of Natural Resources, University of Kashan, Isfahan, Iran
2 - Faculty of Natural Resources, University of Kashan, Isfahan, Iran
Keywords: Check dams, Discharge peak, Flood, Khaveh,
Abstract :
In this study, the hydrological processes of Khaveh Watershed located in Markazi province, Iran were simulated and the effect of check dams on floods in this basin was evaluated. To assess the impact of watershed management structures on floods, flood volume and peak discharge with different return periods were calculated. In order to estimate the irrigation rate of Khaveh Watershed, in this study, the method of Justin was studied. Then, flooding situation of Khaveh Watershed was simulated using HEC-HMS model. For this purpose, the flood hydrographs resulting from the design storms with different return periods in the pre- and post-construction states of watershed management structures were compared with each other. The results showed that the constructed dams clearly reduced the peak discharge and flood volume of the region. Based on the results, the construction of corrective structures has reduced the peak flow, increased the base time of the hydrograph and increased the time to the peak of the hydrograph in different return periods. For the 5, 10, 20, 50, and 100-year return periods, the peak is 0.6 to 3.3, 4.9 to 2.7, 9.4 to 1.5, and 6, hours respectively. Discharge decreased to 0.8 and 22.4 to 12.4 cubic meters per second. Also, the base time of the hydrograph for the mentioned return periods increased from 6.8 to 11.2, 9.3 to 0.16, 2/10 to 17.5, 5/10 hours to 18.5 and 10.10 to 29.3 hours. The latency in time-to-peak for hydrographs due to the construction of structures was approximately 3.5 h.
Ahmadipour, Z., & Yasi, M. (2014). Evaluation of Eco-hydrology-hydraulics Methods for Environmental Flows in Rivers (Case Study: Nazloo River, Urmia Lake Basin). Journal of Hydraulics, 9(2), 69-82. doi: 10.30482/jhyd.2014.8561.(In Persian).
Alemu, M. M. (2016). Integrated watershed management and sedimentation. Journal of Environmental Protection, 7(4), 490-494.
Gain, A. K., & Wada, Y. (2014). Assessment of future water scarcity at different spatial and temporal scales of the Brahmaputra River Basin. Water Resources Management, 28, 999-1012.
Li, D., Long, D., Zhao, J., Lu, H., & Hong, Y. (2017). Observed changes in flow regimes in the Mekong River basin. Journal of Hydrology, 551, 217-232.
Lu, W., Lei, H., Yang, D., Tang, L., & Miao, Q. (2018). Quantifying the impacts of small dam construction on hydrological alterations in the Jiulong River basin of Southeast China. Journal of Hydrology, 567, 382-392.
Mengistu, F., & Assefa, E. (2022). Local perception of watershed degradation in the upper Gibe basin, southwest Ethiopia: implications to sustainable watershed management strategies. International Journal of River Basin Management, 20(2), 235-254.
Mirzavand, M., Ghasemieh, H., Sadatinejad, S., Akbari, M. (2015). Comparison of Artificial Neural Network (ANN) and Multi Variable Regression Analysis (MRA) Models to Predict Ground Water Quality Changes (Case Study: Kashan Aquifer. Water and Soil Science, 25(2), 207-220. (In Persian).
Salehpour Jam, A., Mosaffaie, J., & Tabatabaei, M. R. (2021). Management responses for Chehel-Chay watershed health improvement using the DPSIR framework. Journal of Agricultural Science and Technology, 23(4), 797-811.
Saraie, B., Talebi, A., Mazidi, A., & Parvizi, S. (2020). Prioritization of Sardab-Rood watershed from flooding viewpoint using the SWAT model. Journal of Natural Environmental Hazards, 9(23), 85-98. doi: 10.22111/jneh.2019.29033.1500. (In Persian).
Sayyad, D., Ghazavi, R., & Omidvar, E. (2021). Preparation and analysis of flood risk map using HEC RAS and RAS MAPPER hydraulic model (Case study: Sok Cham river of Kashan). Journal of Geography and Environmental Hazards, 10(3), 19-37. doi: 10.22067/geoeh.2021.69554.1038. (In Persian).
Sultan, D., Tsunekawa, A., Haregeweyn, N., Adgo, E., Tsubo, M., Meshesha, D. T., .. & Ebabu, K. (2017). Analyzing the runoff response to soil and water conservation measures in a tropical humid Ethiopian highland. Physical Geography, 38(5), 423-447.
Werner, A. D., Bakker, M., Post, V. E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., ... & Barry, D. A. (2013). Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, 51, 3-26.
Zayyari, K., Ebrahimipoor, M., Pourjafar, M. R., & salehi, E. (2020). Explaining Strategies for Increasing Physical Resilience against Flood Case Study: Cheshmeh Kile River, Tonekabon River. Sustainable City, 3(1), 89-105. doi: 10.22034/jsc.2019.186626.1014.(In Persian).