Subject Areas : Solid Mechanics
1 -
Keywords:
Abstract :
[1] Azartash P, Khorsandijou SM, Khorshidvand AR. Enhanced geometrically-nonlinear poro-FG shear-deformable beams under moving load in discrete state-space. Australian Journal of Mechanical Engineering. 2023 May 27;21(3):786-814. DOI: 10.1080/14484846.2021.1914389
[2] Zohoor H, Khorsandijou SM, Abedinnasab MH. Modified nonlinear 3D Euler Bernoulli beam theory. JSME International Journal of System Design and Dynamics. 2008;2(5):1170-82. doi: 10.1299/jsdd.2.1170
[3] Khorsandijou SM. Nonlinear dynamic analysis of a spatial mobile flexible robot (Doctoral dissertation, PhD thesis, School of Mechanical Engineering, Sharif University of Technology (Feb. 2007)).
[4] Hassan Zohoor, S. Mahdi Khorsandijou, Dynamic model of a mobile robot with long spatially flexible links, Scientia Iranica, Transaction B: Mechanical Engineering, Vol. 16, No. 5, pp. 387-412, October 2009
[5] Hassan Zohoor, S. Mahdi Khorsandijou, Generalized nonlinear 3D Euler-Bernoulli beam theory, Iranian Journal of Science & Technology, Transaction B: Engineering, Vol. 32, No. B1, pp. 1-12, February 2008
[6] Zohoor H, Khorsandijou SM. Enhanced nonlinear 3D Euler–Bernoulli beam with flying support. Nonlinear Dynamics. 2008 Jan 1;51(1-2):217-30. DOI: 10.1007/s11071-007-9205-6
[7] Zohoor H, Khorsandijou SM. Dynamic model of a flying manipulator with two highly flexible links. Applied Mathematical Modelling. 2008 Oct 1;32(10):2117-32. DOI: 10.1016/j.apm.2007.07.010
[8] Nayfeh Ali H. and Pai P. Frank, Linear and Nonlinear Structural Mechanics, Wiley Series in Nonlinear Science, John Wiley & Sons, Inc., Hoboken, New Jersey, 2004, pp. 226-234.
[9] T.H. Tan, H.P. Lee, G.S.B. Leng, Dynamic stability of a radially rotating beam subjected to base-excitation, Comput. Methods Appl. Mech. Engrg., 146 (1997) 265-279.
[10] Novozhilov V.V., Foundations of the Nonlinear Theory of Elasticity, Unabridged Dover (1999) republication of the work published by Graylock Press Rochester, NY, 1953 pp. 198-217.
[11] Stuart S. Antman, Kirchhoff's problem for nonlinearly elastic rods, Quarterly of applied mathematics, Vol. XXXII, No. 3, October 1974, pp 221-239.
[12] A. E. Green, N. Laws, Remarks on the theory of rods, Journal of Elasticity, vol. 3, no 3, September 1973 , pp 179-184
[13] A. E. Green, F.R.S., P. M. Naghdi and M. L. Wenner, On the theory of rods I: Derivations from the three-dimensional equations, Proc. R. Soc. Lond. A. 337, 451-483 (1974)
[14] A. B. Whitman, C. N. DeSilva, An exact solution in a nonlinear theory of rods, Journal of Easticity, Vol. 4, No. 4, December 1974, pp 265-280
[15] O. M. O'Reilly, J. S. Turcotte, On the steady motions of a rotating elastic rod, Transactions of the ASME, Vol. 68, September 2001, pp 766-771.
[16] Xie K, Wang Y, Fan X, Fu T. Nonlinear free vibration analysis of functionally graded beams by using different shear deformation theories. Applied Mathematical Modelling. 2019 Sep 21. DOI: 10.1016/j.apm.2019.09.024
[17] Esen I. Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. International Journal of Mechanical Sciences. 2019 Apr 1;153:21-35. DOI: 10.1016/j.ijmecsci.2019.01.033
[18] Wang Y, Xie K, Fu T, Shi C. Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses. Composite Structures. 2019 Feb 1;209:928-39. DOI: 10.1016/j.compstruct.2018.11.014
[19] Esen I, Koc MA, Cay Y. Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an accelerating mass including inertial effects of the mass. Latin American Journal of Solids and Structures. 2018;15(10). DOI: 10.1590/1679-78255102