Subject Areas : Solid Mechanics
Mohammad Abbaszadeh 1 , abbas kamaloo 2
1 -
2 -
Keywords:
Abstract :
Akbari, M., Kiani, Y., Aghdam, M., & Eslami, M. (2014). Free vibration of FGM Lévy conical panels. Composite Structures, 116, 732-746.
Akbulut, M., & Sonmez, F. O. (2008). Optimum design of composite laminates for minimum thickness. Computers & Structures, 86(21-22), 1974-1982.
Almeida Jr, J. H. S., Ribeiro, M. L., Tita, V., & Amico, S. C. (2017). Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damage. Composite Structures, 178, 20-26.
Amabili, M. (2012). Nonlinear vibrations of angle-ply laminated circular cylindrical shells: Skewed modes. Composite Structures, 94(12), 3697-3709.
Bagheri, H., Kiani, Y., & Eslami, M. (2017a). Free vibration of conical shells with intermediate ring support. Aerospace Science and Technology, 69, 321-332.
Bagheri, H., Kiani, Y., & Eslami, M. (2017b). Free vibration of joined conical-conical shells. Thin-Walled Structures, 120, 446-457.
Chen, J. C., & Babcock, C. D. (1975). Nonlinear vibration of cylindrical shells. AiAA Journal, 13(7), 868-876.
Chu, H.-N. (1961). Influence of large amplitudes on flexural vibrations of a thin circular cylindrical shell. Journal of the Aerospace Sciences, 28(8), 602-609.
Civalek, Ö. (2013). Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory. Composites Part B: Engineering, 45(1), 1001-1009.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16): John Wiley & Sons.
Dey, T., & Ramachandra, L. (2017). Non-linear vibration analysis of laminated composite circular cylindrical shells. Composite Structures, 163, 89-100.
Do, Q. C., Vu, T. T. A., & Nguyen, D. D. (2018). Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells surrounded by an elastic medium in thermal environments. Acta Mechanica.
Duc, N. D. (2013). Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation. Composite Structures, 99, 88-96.
Duc, N. D., & Quan, T. Q. (2013). Nonlinear postbuckling of imperfect eccentrically stiffened P-FGM double curved thin shallow shells on elastic foundations in thermal environments. Composite Structures, 106, 590-600.
Duc, N. D., & Thang, P. T. (2014a). Nonlinear buckling of imperfect eccentrically stiffened metal–ceramic–metal S-FGM thin circular cylindrical shells with temperature-dependent properties in thermal environments. International Journal of Mechanical Sciences, 81, 17-25.
Duc, N. D., & Thang, P. T. (2014b). Nonlinear response of imperfect eccentrically stiffened ceramic–metal–ceramic FGM thin circular cylindrical shells surrounded on elastic foundations and subjected to axial compression. Composite Structures, 110, 200-206.
Ertas, A. H., & Sonmez, F. O. (2010). Design of fiber reinforced laminates for maximum fatigue life. Procedia Engineering, 2(1), 251-256.
Friswell, M. I. (2006). Damage identification using inverse methods. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 393-410.
Fritzen, C. P. (2005). Vibration-based structural health monitoring–concepts and applications. Paper presented at the Key Engineering Materials.
Fu, Y.-M. (2013). Nonlinear analyses of laminated plates and shells with damage: WIT Press.
Fu, Y., & Chen, C. (2001). Non-linear vibration of elastic truncated conical moderately thick shells in large overall motion. International Journal of Non-Linear Mechanics, 36(5), 763-771.
Hammami, M., El Mahi, A., Karra, C., & Haddar, M. (2016). Nonlinear behaviour of glass fibre reinforced composites with delamination. Composites Part B: Engineering, 92, 350-359.
Hirano, Y. (1989). Nonlinear vibrations of composite material shells.
Hu, H.-T., & Ou, S.-C. (2001). Maximization of the fundamental frequencies of laminated truncated conical shells with respect to fiber orientations. Composite Structures, 52(3-4), 265-275.
Ikeya, K., Shimoda, M., & Shi, J.-X. (2016). Multi-objective free-form optimization for shape and thickness of shell structures with composite materials. Composite Structures, 135, 262-275.
Irie, T., Yamada, G., & Muramoto, Y. (1984). Free vibration of joined conical-cylindrical shells. Journal of Sound and Vibration, 95(1), 31-39.
Jin, G., Ma, X., Shi, S., Ye, T., & Liu, Z. (2014). A modified Fourier series solution for vibration analysis of truncated conical shells with general boundary conditions. Applied Acoustics, 85, 82-96.
Kachanov, L. (1976). Separation failure of composite materials. Mechanics of Composite Materials, 12(5), 812-815.
Kamaloo, A., Jabbari, M., Tooski, M. Y., & Javadi, M. (2019a). Nonlinear Free Vibrations Analysis of Delaminated Composite Conical Shells. International Journal of Structural Stability and Dynamics, 2050010.
Kamaloo, A., Jabbari, M., Tooski, M. Y., & Javadi, M. (2019b). Optimization of thickness and delamination growth in composite laminates under multi-axial fatigue loading using NSGA-II. Composites Part B: Engineering, 106936.
Kessler, S. S., Spearing, S. M., Atalla, M. J., Cesnik, C. E., & Soutis, C. (2002). Damage detection in composite materials using frequency response methods. Composites Part B: Engineering, 33(1), 87-95.
Khan, N., Goldberg, D. E., & Pelikan, M. (2002). Multi-objective Bayesian optimization algorithm. IlliGAL Report(2002009), 114-125.
Koide, R. M., & Luersen, M. A. (2013). Maximization of fundamental frequency of laminated composite cylindrical shells by ant colony algorithm. Journal of Aerospace Technology and Management, 5(1), 75-82.
Lam, K., & Hua, L. (1999). On free vibration of a rotating truncated circular orthotropic conical shell. Composites Part B: Engineering, 30(2), 135-144.
Najafov, A., Sofiyev, A., & Kuruoglu, N. (2014). On the solution of nonlinear vibration of truncated conical shells covered by functionally graded coatings. Acta Mechanica, 225(2), 563-580.
Nanda, N., & Sahu, S. (2012). Free vibration analysis of delaminated composite shells using different shell theories. International Journal of Pressure Vessels and Piping, 98, 111-118.
Ohta, Y. (2010). Optimal Stacking Sequence for Nonlinear Vibration of Laminated Composite Circular Cylindrical Shells. Paper presented at the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th.
Qu, Y., Chen, Y., Long, X., Hua, H., & Meng, G. (2013a). A modified variational approach for vibration analysis of ring-stiffened conical–cylindrical shell combinations. European Journal of Mechanics-A/Solids, 37, 200-215.
Qu, Y., Chen, Y., Long, X., Hua, H., & Meng, G. (2013b). A variational method for free vibration analysis of joined cylindrical-conical shells. Journal of vibration and control, 19(16), 2319-2334.
Sasidhar, G., Dayan, M. G., & Dora, M. H. (2013). Multi-objective optimization of laminated composite plate using a non-dominated sorting genetic algorithm. International Journal of Engineering Science and Technology, 5(4), 844.
Shi, J.-X., & Shimoda, M. (2015). Interface shape optimization of designing functionally graded sandwich structures. Composite Structures, 125, 88-95.
Shimoda, M., & Liu, Y. (2014). A non-parametric free-form optimization method for shell structures. Structural and Multidisciplinary Optimization, 50(3), 409-423.
Sofiyev, A. (2012). The non-linear vibration of FGM truncated conical shells. Composite Structures, 94(7), 2237-2245.
Sofiyev, A., Kuruoglu, N., & Halilov, H. (2010). The vibration and stability of non-homogeneous orthotropic conical shells with clamped edges subjected to uniform external pressures. Applied Mathematical Modelling, 34(7), 1807-1822.
Tong, L. (1993a). Free vibration of composite laminated conical shells. International Journal of Mechanical Sciences, 35(1), 47-61.
Tong, L. (1993b). Free vibration of orthotropic conical shells. International Journal of Engineering Science, 31(5), 719-733.
Tornabene, F., Fantuzzi, N., Bacciocchi, M., & Reddy, J. (2017). A posteriori stress and strain recovery procedure for the static analysis of laminated shells resting on nonlinear elastic foundation. Composites Part B: Engineering, 126, 162-191.
Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E., & Reddy, J. (2017). A numerical investigation on the natural frequencies of FGM sandwich shells with variable thickness by the local generalized differential quadrature method. Applied sciences, 7(2), 131.
Tripathi, V., Singh, B., & Shukla, K. (2007). Free vibration of laminated composite conical shells with random material properties. Composite Structures, 81(1), 96-104.
Van Dung, D. (2013a). Nonlinear buckling and post-buckling analysis of eccentrically stiffened functionally graded circular cylindrical shells under external pressure. Thin-Walled Structures, 63, 117-124.
Van Dung, D. (2013b). Research on nonlinear torsional buckling and post-buckling of eccentrically stiffened functionally graded thin circular cylindrical shells. Composites Part B: Engineering, 51, 300-309.
Wei, R., Pan, G., Jiang, J., Shen, K., & Lyu, D. (2019). An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm. Thin-Walled Structures, 142, 160-170.
Wilkins Jr, D., Bert, C., & Egle, D. (1970). Free vibrations of orthotropic sandwich conical shells with various boundary conditions. Journal of Sound and Vibration, 13(2), 211-228.
Xu, C., Xia, Z., & Chia, C. (1996). Non-linear theory and vibration analysis of laminated truncated, thick, conical shells. International Journal of Non-Linear Mechanics, 31(2), 139-154.
Yang, J., & Fu, Y. (2006). Delamination growth of laminated composite cylindrical shells. Theoretical and applied fracture mechanics, 45(3), 192-203.
Yang, J., Fu, Y., & Wang, X. (2007). Variational analysis of delamination growth for composite laminated cylindrical shells under circumferential concentrated load. Composites science and technology, 67(3-4), 541-550.
Yang, Z., Chen, X., Yu, J., Liu, R., Liu, Z., & He, Z. (2013). A damage identification approach for plate structures based on frequency measurements. Nondestructive Testing and Evaluation, 28(4), 321-341.
Zou, Y., Tong, L., & Steven, G. P. (2000). Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review. Journal of Sound and Vibration, 230(2), 357-378.