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Abstract 

This study presents the multi-objective optimization of delaminated multi-ply cylindrical and 

conical shells to simultaneously maximize strength and minimize thickness using the Non-

dominated Sorting Genetic Algorithm II (NSGA-II). The shells, featuring a through-the-

circumference delamination, are subjected to large-amplitude oscillations. The optimization aims 

to identify optimal strength-to-thickness ratios by treating fiber orientation angles, individual layer 

thicknesses, and layup configurations (cross-ply, angle-ply, and off-axis) as design variables. 

Results indicate that cross-ply layups achieve the highest performance in terms of strength-to-

thickness ratio under nonlinear vibrations, followed by angle-ply and off-axis configurations, 

respectively. Furthermore, increasing the initial population size improves the optimization results 

for both shell types. However, while a higher number of iterations enhances outcomes for 

cylindrical shells, it adversely affects the optimization performance for conical shells. 

Keywords: NSGA-II; throughout-circumference delamination; delaminated conical composite 

shells; delaminated cylindrical composite shells; nonlinear vibration; stacking sequence 

optimization 

 

1. Introduction 

Laminated composite materials are widely used in industries such as aerospace, marine, 

automotive, and civil engineering due to their excellent mechanical performance, including high 

stiffness-to-weight and strength-to-weight ratios, superior corrosion resistance, and design 

flexibility. Among these applications, cylindrical and conical composite shells serve as 

fundamental elements in thin-walled structures such as fuselage sections, rocket motor casings, 

submarine hulls, and pressure vessels. Their vibration characteristics, therefore, have a direct 

impact on structural integrity, service life, and safety. 

Despite extensive research, predicting the nonlinear vibrational response of laminated shells 

remains a challenge. Discrepancies persist between theoretical formulations and experimental  
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outcomes, partly due to complexities such as geometric nonlinearity, material anisotropy, and 

manufacturing defects. Nonlinear behavior may manifest as hardening springs, where the natural 

frequency increases with oscillation amplitude, or as softening springs, where it decreases. 

Correctly capturing these effects is essential for accurate design and failure prevention. 

Delamination represents one of the most critical damage mechanisms in laminated composites. It 

can originate during manufacturing due to residual stresses, voids, or improper curing, and during 

service due to impact loads, fatigue, or environmental degradation. Because delamination disrupts 

load transfer between plies and reduces both stiffness and strength, failing to incorporate it into 

analytical and numerical models can lead to unsafe overestimations of performance. This issue is 

particularly important in thin-walled multi-ply shells, where even minor delamination can 

significantly alter dynamic behavior. 

Optimization in engineering design aims to identify the most favorable configuration of parameters 

subject to performance, manufacturing, and operational constraints. It reflects the universal 

principle of attaining maximum efficiency with minimum resource expenditure. In the context of 

composite shells, optimization must balance factors such as stiffness, strength, weight, cost, and 

damage tolerance. Given the large number of design variables—fiber orientations, layer 

thicknesses, material selection, and stacking sequences—traditional trial-and-error approaches are 

inefficient and prone to suboptimal results. 

Over time, a wide range of computational optimization techniques has been employed, from 

gradient-based methods suitable for smooth search spaces to metaheuristic algorithms such as 

genetic algorithms, particle swarm optimization, and simulated annealing, which are effective for 

nonlinear, multi-objective, and highly constrained problems. In particular, evolutionary 

multi-objective algorithms, such as Deb’s Non-Dominated Sorting Genetic Algorithm II 

(NSGA-II), have gained prominence for their ability to identify a diverse set of Pareto-optimal 

solutions in a single run. 

Research into the nonlinear vibrations of cylindrical and conical composite shells dates back 

several decades. Landmark contributions include Chu (1961) on self-excited vibrations, Chen and 

Babcock (1975) on high-amplitude oscillations, and Hirano (1989) on amplitude–frequency 

relationships in cylindrical and conical shells. Subsequent works employed classical shell 

theories—Donnell’s, Flügge’s, and higher-order shear deformation formulations—combined with 

numerical approaches like Galerkin’s method and Incremental Harmonic Balance to model both 

free and forced nonlinear vibrations. More recent studies have addressed delamination 

propagation, the effects of ply layup, and dynamic instability under various loading conditions. 

In parallel, optimization approaches have been applied to composite design problems. Ohta (2010) 

examined stacking sequence optimization, Sasidhar et al. (2013) targeted weight and deflection 

reduction, and Akbulut and Sonmez (2008) pursued thickness minimization. However, the 

combination of delamination effects, large-amplitude vibration modeling, and multi-objective  
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optimization using NSGA-II—particularly for both cylindrical and conical shells—remains 

comparatively underexplored. 

The present work addresses this gap. Using the NSGA-II algorithm, delaminated cylindrical and 

conical graphite/epoxy shells are optimized for two conflicting objectives: maximizing the 

nonlinear free vibration frequency (as a strength-related performance measure that accounts for 

delamination) and minimizing thickness (for material and weight efficiency). The study 

investigates three layup configurations—cross-ply, angle-ply, and off-axis—while varying fiber 

orientation angles and individual ply thicknesses as primary design variables. The findings not 

only advance understanding of how delamination alters vibration characteristics but also provide 

practical guidelines for designing lightweight, high-performance composite shells under severe 

dynamic conditions. 

1.1 Literature Review 

Over the past several decades, researchers have investigated the nonlinear vibration behavior of 

laminated composite shells from different perspectives, including analytical formulations, 

numerical methods, experimental validation, and optimization. Table 1 summarizes representative 

works, emphasizing shell type, vibration regime (linear/nonlinear), the presence of delamination, 

analytical or numerical approaches, and whether optimization techniques were employed. 

This review highlights that while nonlinear vibrations of laminated shells have been addressed in 

the past, most studies have either neglected delamination or addressed it without multi objective 

optimization. Moreover, investigations that simultaneously consider large amplitude nonlinear 

effects, delamination throughout the circumference, and both cylindrical and conical shells—

optimized via an evolutionary multi objective approach such as NSGA II—are noticeably scarce. 

This gap forms the motivation and novelty of the current research. 

 

 

 

 

 

 

 

 



 

Author(s) & 

Year 

Shell Type(s) 

Studied 

Vibration 

Regime 

Delamination 

Considered 

Methodology / 

Theory Used 

Optimization 

Applied 

Key Findings / 

Limitations 

Chu (1961) Cylindrical Nonlinear No 

Early analytical 
models of 

self-excited 

vibrations 

No 

Established 

foundational 
nonlinear vibration 

theory for thin 

shells; no composite 
focus 

Chen & 
Babcock 

(1975) 

Cylindrical, 

isotropic 
Nonlinear No 

Experimental + 

theoretical 

high-amplitude 
oscillations 

No 

Showed amplitude–

frequency and 
damping effects; did 

not address 

composites 

Hirano (1989) 

Cylindrical & 

conical, 
laminated 

Nonlinear No 
Donnell shell theory, 

analytical solutions 
No 

Provided amplitude–

frequency 

relationships; 
ignored damage 

effects 

Abrate (1998) 
Laminated plates 

& shells 
Nonlinear Yes 

Analytical damage 

mechanics 
No 

Investigated 

delamination 
influence; limited to 

small-amplitude 

cases 

Wang & Chia 

(2000) 

Conical, 

laminated 
Nonlinear No 

Higher-order shear 

deformation theory 
No 

Improved accuracy 
for thick shells; no 

damage 

consideration 

Akbulut & 
Sonmez (2008) 

Laminated 
cylindrical 

Linear No 
FEM + Genetic 

Algorithm 
Yes 

Optimized stacking 
for thickness 

reduction; ignored 

vibration & 

delamination 

Ohta (2010) 
Cylindrical, 
laminated 

Linear No FEM + NSGA-II Yes 

Multi-objective 

layup optimization; 
no damage or 

nonlinear effect 

Sasidhar et al. 

(2013) 
Laminated plates Linear No FEM + GA Yes 

Multi-objective 

weight & deflection 
optimization; no 

shell or 

delamination case 

Ahmed et al. 

(2016) 

Cylindrical 

laminated shells 
Nonlinear Yes 

FEM, delamination 

modeling 
No 

Explored 
delamination effects 

on free vibration; no 

optimization 

Present study 
Cylindrical & 

conical, 

laminated 

Nonlinear Yes 
Donnell theory + 

Galerkin method + 

NSGA-II 

Yes 

Multi-objective 
optimization 

considering 

delamination and 
large-amplitude 

vibrations 

Table 1 – Summary of representative studies on nonlinear vibration and optimization of laminated 

composite shells 

 

 

4 Journal of Mechanical Research and Application (JMRA), Vol. 15 No.1, 1404 (2025),1-26 



 

Shell Geometry 

Figures 1 and 2 illustrate the multi-ply conical and cylindrical shells considered in this study. 

Both have symmetric and balanced layups with throughout-circumference delamination located 

in the middle layers. 

 Cylindrical shell: Length L, thickness h, mid-surface radius R, and density ρ 

 Conical shell: Length L, thickness h, vertex radii Ro and R2, mid-surface radius R1, 

density ρ0, and vertex half-angle α. 

 

Fig. 1: Geometry of multi-ply cylindrical composite shell with throughout circumference 

delamination 
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Fig. 2: Geometry of multi-ply conical composite shell with throughout circumference 

delamination 

Delamination is modeled as throughout circumference delamination in two adjoining layers, length 

β·L (0<β<1). 

Mathematical areas: 

Ω = {(x, θ)|0 ≤ x ≤ L , 0 ≤ θ ≤ 2π} 

Ωd = {(x, θ)|l ≤ x ≤ l + β. L , 0 ≤ θ ≤ 2π} 

In this study, shells are divided into three areas, namely the whole cone, the upper area, and the 

lower area of delamination which are respectively indicated by superscripts (0) and k(k=1,2); here, 

the upper area of delamination is indicated by a superscript (1) and the lower area is shown by (2).  

Applying the above said definitions and Hamilton's principle for shell geometry as in the 

references (Kamaloo et al., 2019a), Kamaloo et al. computed the governing equations of motion.     

In order to simplify the solutions, they converted the order of governing equations from nonlinear 

partial differential equations to ordinary differential equations.   By using the structural relation 

and the kinematic among resultants and stress couplings with strain, curvature, and in turn, the 

displacement equations, they calculated the governing equations in the form of second-order 

nonlinear ordinary differential equations in terms of displacement equations.  

Equations of motion are derived using Hamilton’s principle and reduced to nonlinear second-order 

ODEs. 
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Boundary conditions and numerical solution: 

Firstly, the fixed-bearing boundary conditions are used at both ends of the shell as follows:  

w0 = 0, (w0),xx = 0 , Nx = 0 , v0 = 0 

Continuity at delamination boundaries: 

u(k)|x=l,l+β.L = 0 , v(k)|x=l,l+β.L = 0 , w(k)|x=l,l+β.L = 0 , (w(k)),x|x=l,l+β.L = 0 

Displacement expansions are defined for axial wave number m and circumferential wave number 

n. The system reduces to coupled nonlinear ODEs (Eq. 7–8), solved by 4th-order Runge-Kutta 

with initial conditions. 

For axial half-wave number m and circumferential wave number n, the displacements are 

expanded as 

U0 = ∑ ∑ umn
0 (t)cos

mπx

L
cosnθ

∞

n=1

∞

m=1

 (1) 

V0 = ∑ ∑ vmn
0 (t)sin

mπx

L
sin nθ

∞

n=1

∞

m=1

 (2) 

W0 = ∑ ∑ wmn
0 (t)sin

mπx

L
cos nθ

∞

n=1

∞

m=1

 (3) 

Uk = ∑ ∑ umn
k (t)sin

mπ(x − l)

β. L
cosnθ

∞

n=1

∞

m=1

 (4) 

Vk = ∑ ∑ vmn
k (t)sin

mπ(x − l)

β. L
sin nθ

∞

n=1

∞

m=1

 (5) 

Wk = ∑ ∑ wmn
k (t)cos

mπ(x − l)

β. L
cos nθ

∞

n=1

∞

m=1

 

(6) 

 

 

 

Following Kamaloo et al. (2019a), Ui(t) and Vi (t) in terms of Wi (t)  (i=0,k)  are expressed in terms 

of Wi (t) ,yielding a pair of coupled nonlinear ODEs (constants ai fixed): 

 

(ρ0
0 + ρ0

k)
d2w0(t)

dt2 + ρ0
k d2wk(t)

dt2 = a1w0(t) + a2(w0(t))3 + a3w0(t)wk(t) +

a4w0(t)(wk(t))2                                                                                                                         

 

(7) 

ρ0
k (

d2w0(t)

dt2 + 2
d2wk(t)

dt2 ) = a5(t) + a6 (wk(t))
2

+ a7 (wk(t))
3

                                                                                                    (8) 

7 Journal of Mechanical Research and Application (JMRA), Vol. 15 No.1, 1404 (2025),1-26 



 

The system is decoupled and integrated with a fourth-order Runge–Kutta scheme. Initial, 

dimensionless amplitudes: 

 

Table 1: Initial conditions 

W0t(0)/h 2.5  

Wkt(0)/h 2.5  

Multi-objective optimization 

A multi-objective optimization problem (MOP) seeks to optimize multiple, possibly conflicting 

objectives. The solution set is characterized by the Pareto front: solutions for which improving 

one objective necessarily degrades at least one other. 

 

 

Fig. 3: Stages of the Multi-objective Non-dominated Sorting Genetic Algorithm  

We optimize two conflicting objectives: minimize total thickness (f1) and maximize nonlinear 

free-vibration frequency (f2). NSGA-II uses binary tournament selection by rank then crowding 

distance. For a front, the crowding distance of member i is: 
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Fig. 5: Definition of crowding distance 

The crowding distance is indicated by di and defined as below: 

di
1 =

|f1
i+1 − f1

i−1|

f1
max − f1

min
 

di
2 =

|f2
i+1 − f2

i−1|

f2
max − f2

min
 

di = di
1 + di

2 

Results and discussion: 

As mentioned in the introduction, one of the main capabilities of NSGA-II1 is the multi-objective 

optimization of two or more conflicting objective functions.  Accordingly, this section deals with 

the optimization of thickness and frequency of nonlinear free vibrations in conical and cylindrical 

shells with throughout circumference delamination employing multi-objective genetic algorithm 

in order to obtain a shell with minimum thickness and maximum nonlinear free vibration 

frequency. Defining an optimization problem depends on considering design constraints, design 

variables, and objective functions.   Considering the type of layups, this research assumes the 

following constraints and variables: 

                                                           
1 Modified Non-Dominated Sorting Genetic Algorithms 
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Design variables 

 Ply thicknesses. 

 Fiber orientation angles (off-axis plies). 

Constraints 

 Fiber angles: Range of fiber orientation: (At 5-degree intervals) [-90:5:90]  

 Range of layers thickness (Inch):  [0.001:0.0001:0.009] 

Objectives 

 f1: minimize total shell thickness (inch). 

 f2: maximize nonlinear free-vibration frequency (Hz). 

Model Conditions 

Table 1. Cylindrical shell 

 

  

l 

m 

n 

R 

L 

0.3 

1 

2 

2in 

2in 

 

 

 

Table 2. Conical shell 

 

 

β 

m 

n 

R0 

L 

α 

0.2 

1 

2 

5in 

5in 

100 
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To validate the formulation, results are compared with Kamaloo et al. (2019a) for 10-ply 

graphite/epoxy cylindrical and conical shells (cross- and angle-ply). As shown in Figures 6 and 7, 

cross-ply yields higher nonlinear free-vibration frequencies than angle-ply for both shell types.

 

Fig. 6: Effect of variation in the orthotropic properties of delaminated conical shells on their 

nonlinear behaviors  

(β=0.2, l=0.3in, R=5in, α=100, L=2in, m=1,n=2, h=0.025in) 

 

 

Fig. 7: Effect of variation in the orthotropic properties of delaminated conical shells on their 

oscillating motion. 

(β = 0.2, l = 0.3 in, R= 2in, L = 2 in, m = 1, n=2, h = 0.025 in). 
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As could be understood from Figures 6 and 7, the nonlinear free vibration frequency, in both 

delaminated conical and cylindrical shells, is higher in cross-ply layup compared to angle-ply 

layup under identical conditions.   

 

Cylindrical Shells (10 plies) 

Angle-ply: population = 5, iterations = 15. 

 

 

 

 

 

Figure 8. First Pareto front (one member). 

Best solution: 

t = [0.0062    0.0021    0.0025    0.0036    0.0046]s 

 = [45   -45    45   -45    45]s   

Nonlinear Frequency = 

 6.0014 x 10- 4 HZ 

Thickness = 

 0.038 in 
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Cross-ply: population = 5, iterations = 15. 

 

 

 

Figure 9. First Pareto front (one member). 

Best solution: 

t = [0.0067    0.0017    0.0013    0.0012    0.0032]s 

 = [0    90     0    90     0]s   

Nonlinear Frequency = 

 6.0015 x 10- 4 HZ 

Thickness = 

 0.0282 in 

 

Observation: Cross-ply achieves a higher frequency at lower thickness than angle-ply. 

 

Conical Shells (10 plies) 

Angle-ply: population = 5, iterations = 15. 
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Figure 10. First Pareto front (one member). 

Best solution: 

t = [0.0013    0.0033    0.0080    0.0042    0.0012]s 

 = [45   -45    45   -45    45]s   

Nonlinear Frequency = 

 103.2389 x 10- 4 HZ 

Thickness = 

 0.036 in 

 

Cross-ply: population = 5, iterations = 15. 

As shown in Figure 11, there is one member in the first front of Pareto frontiers in this optimization  
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Figure 11. First Pareto front (one member). 

Best solution: 

t = [0.0083    0.0037    0.0040    0.0052    0.0019]s 

 = [0    90     0    90     0]s   

Nonlinear Frequency = 

 175.0511 x 10- 4 HZ 

Thickness = 0.023 in 

 

Observation: As with cylinders, cross-ply outperforms angle-ply for conical shells. 

 

Off-Axis Studies 

Cylindrical Shells 

10-ply: population = 5, iterations = 10. 
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Figure 12. First Pareto front (one members) 

 

Number of populations: 5 

Number of iterations: 10 

t = [0.0044    0.0049    0.0019    0.0028    0.0057]s 

 = [-30   -45    90    60    45]s   

Nonlinear Frequency = 

 6.0013 x 10- 4 HZ 

Thickness = 

 0.0394 in 

 

20-ply: population = 5, iterations = 15. 
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Figure 13. First Pareto front (two members). Higher-frequency member selected: 

 

t = [0.0059    0.0037    0.0012    0.0024    0.0048    0.0073   0.0068    0.0069    0.0025    0.0022]s 

 = [45   -45   -60   -50    10    35    40   -15    -5   -90]s   

Nonlinear Frequency = 

 6.0015 x 10- 4 HZ 

Thickness = 

 0.0874 in 

 

30-ply: population = 5, iterations = 15. 
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Figure 14. First Pareto front (two members); best by frequency: 

Number of populations: 5 

Number of iterations: 15 

 

t = [0.0040    0.0017    0.0064    0.0068    0.0045    0.0031    0.0022    0.0014    0.0027    0.0058    

0.0038    0.0051    0.0011    0.0034    0.0028]s 

 = [15   -50    35   -45   -25   -10    25   -80    50    75    70    20    80   -20   -55]s   

Nonlinear Frequency = 

 6.0016 x 10- 4 HZ 

Thickness = 

 0.011 in 

 

Conical Shells 

10-ply: population = 5, iterations = 15. 
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Figure 15. First Pareto front (two members); best by frequency 

t = [0.0023    0.0071    0.0010    0.0053    0.0072]s 

 = [-45     5    70    50    75]s   

Nonlinear Frequency = 

 57.3730 x 10- 4 HZ 

Thickness = 

 0.0458 in 

20-ply: population = 5, iterations = 15. 
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Figure 16. First Pareto front (one member). 

 

t = [0.0082    0.0015    0.0029    0.0014    0.0058    0.0020   0.0045    0.0027    0.0011    0.0034]s 

 = [-15   -85   -10    45   -60   -65    70   -40    75    25]s   

Nonlinear Frequency = 

  112.3670 x 10- 4 HZ 

Thickness = 

 0.0670 in 

Summary of layup effects: For both shell types, cross-ply consistently yields higher nonlinear free-

vibration frequencies than angle-ply and off-axis for comparable thicknesses. 

 

30-ply: population = 5, iterations = 15. 

 

 

Figure 17. First Pareto front (one member). 

 

t = [0.0028    0.0041    0.0087    0.0020    0.0035    0.0061    0.0012    0.0055    0.0047    0.0044    

0.0034    0.0037    0.0019    0.0039    0.0086]s 

 = [60   -80   -55   -35    15    40    85   -30    50   -40    55    70    65    -5    90]s   

Nonlinear Frequency = 

 233.6061 x 10- 4 HZ 
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Thickness = 

 0.0129 in 

Effect of Population and Iterations (NSGA-II Settings) 

Conical Shells (cross-ply, 10-ply) 

Population = 10, Iterations = 40: 

t = [0.0069    0.0015    0.0045    0.0033    0.0016]s 

 = [0    90     0    90     0]s   

Nonlinear Frequency = 

 510.4673 x 10- 4 HZ 

Thickness = 

 0.0356 in 

 

Figure 18. First Pareto front. 

 

Population = 10, Iterations = 60 (geometry/delamination fixed): 

t = [0.0061    0.0018    0.0057    0.0043    0.0020]s 

 = [0    90     0    90     0]s   

Nonlinear Frequency = 

 238.95 x 10- 4 HZ 
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Thickness = 

 0.0398 in 

 

Figure 19. First Pareto front (two members). 

Observation: More iterations worsened conical-shell results under these settings. 

Cylindrical Shells (cross-ply, 10-ply) 

Population = 10, Iterations = 40: 

 

Figure 20. First Pareto front (two members).  
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Best member: 

t = [0.0056    0.0036    0.0050    0.0024    0.0060]s 

 = [0    90     0    90     0]s   

Nonlinear Frequency = 

 6.0016 x 10- 4 HZ 

Thickness = 

 0.0452 in 

 

Observation: More iterations improved cylindrical-shell results (higher frequency, lower 

thickness). 

Overall: Increasing initial population helps both shell types; increasing iterations helps 

cylindrical but hurts conical shells under the tested conditions 

Conclusion 

This study successfully applied the NSGA-II multi-objective optimization algorithm to design 

delaminated cylindrical and conical composite shells with maximized strength and minimized 

thickness. The key findings are summarized as follows: 

1. Cross-ply layups were found to be superior to angle-ply and off-axis configurations, consistently 

providing higher nonlinear free vibration frequencies for a given thickness. 

2. The NSGA-II algorithm effectively identified a set of Pareto-optimal solutions, providing 

designers with a range of high-performance designs that balance the conflicting objectives of 

strength and weight. 

3. The study of algorithmic parameters revealed that while a larger initial population is universally 

beneficial, the optimal number of iterations is geometry-dependent. Cylindrical shells benefit 

from more iterations, whereas conical shells show degraded performance, a critical 

consideration for future optimization studies. 

The presented framework provides valuable insights for the design of damage-tolerant composite 

structures subjected to demanding dynamic environments. 
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