An optimized FOC method for three-phase induction motor drives using PSO algorithm
Subject Areas : Electrical Engineering
Ali Boroumand
1
,
Reza Ebrahimi
2
,
Rahemeh Tabasian
3
1 -
2 -
3 -
Keywords: double PI regulators, field-oriented control, optimized controllers, particle swarm optimization, three-phase induction motor drive,
Abstract :
This paper proposes a modified Field-Oriented Control (FOC) method for three-phase induction motor drives. In this method, double Proportional-Integral (PI) regulators instead of the conventional PI regulators are used. In addition, a simple algorithm based on the Particle Swarm Optimization (PSO) approach is presented to tune the parameters of double PI regulators. In other words, the proposed FOC approach is a modification of the conventional FOC technique where optimized double PI regulators are utilized to improve the performance of the three-phase induction motor drive system. The proposed FOC method improves the quality of the system during dynamic and steady-state conditions. The simulation results of the proposed FOC process are compared with the results of different FOC methods for a three-phase induction motor drive system using the Matlab/Simulink software. The results in this paper show the strength and effectiveness of the suggested FOC technique.
[1] Errouha, M., Combe, Q., Ouanjli, N. E., & Motahhir, S. (2024). A review of modern techniques for efficient control of AC motors utilized in PV water pumping system. Irrigation Science, 1-21.
[2] Abdel-Aziz, A., Elgenedy, M., & Williams, B. (2024). Review of switched reluctance motor converters and torque ripple minimisation techniques for electric vehicle applications. Energies, 17(13), 3263.
[3] Monadi, M., Nabipour, M., Akbari-Behbahani, F., & Pouresmaeil, E. (2024). Speed control techniques for permanent magnet synchronous motors in electric vehicle applications towards sustainable energy mobility: A review. IEEE Access.
[4] Usha, S., Geetha, P., Geetha, A., Palanisamy, R., Thentral, T. T., Mahato, B., ... & Alharbi, M. (2024). Performance enhancement of sensorless induction motor drive using modified direct torque control techniques for traction application. Alexandria Engineering Journal, 108, 518-538.
[5] Maidana, P., Medina, C., Rodas, J., Maqueda, E., Gregor, R., & Wheeler, P. (2022). Sliding-mode current control with exponential reaching law for a three-phase induction machine fed by a direct matrix converter. Energies, 15(22), 8379.
[6] Azab, M. (2025). A Review of Recent Trends in High-Efficiency Induction Motor Drives. Vehicles, 7(1), 15.
[7] Mehedi, I. M., Saad, N., Magzoub, M. A., Al-Saggaf, U. M., & Milyani, A. H. (2022). Simulation analysis and experimental evaluation of improved field-oriented controlled induction motors incorporating intelligent controllers. IEEE Access, 10, 18380-18394.
[8] Hadla, H., & Santos, F. (2022). Performance comparison of field-oriented control, direct torque control, and model-predictive control for SynRMs. Chinese Journal of Electrical Engineering, 8(1), 24-37.
[9] Kwan, C. M., & Lewis, F. L. (2000). Robust backstepping control of induction motors using neural networks. IEEE Transactions on Neural Networks, 11(5), 1178-1187.
[10] Lin, F. J., Shen, P. H., & Hsu, S. P. (2002). Adaptive backstepping sliding mode control for linear induction motor drive. IEE Proceedings-Electric Power Applications, 149(3), 184-194.
[11] Travieso-Torres, J. C., Ricaldi-Morales, A. J., & Aguila-Camacho, N. (2024). Robust Combined Adaptive Passivity-Based Control for Induction Motors. Machines, 12(4), 272.
[12] Bekhiti, B., Hariche, K., Roudane, M., Kabanov, A., & Kramar, V. (2025). Learning-Driven Intelligent Passivity Control Using Nonlinear State Observers for Induction Motors.
[13] Zaparoli, I. O., Júnior, A. A., Êvo, M. T. A., Souza, D. S., & De Paula, H. (2024). Early fault detection in FOC driven induction motors: a case study. IEEE Access.
[14] Jannati, M., Idris, N. R. N., & Aziz, M. J. A. (2014). Indirect rotor field-oriented control of fault-tolerant drive system for three-phase induction motor with rotor resistance estimation using EKF. TELKOMNIKA Indonesian Journal of Electrical Engineering, 12(9), 6633-6643.
[15] Wang, B., Wang, T., Yu, Y., & Xu, D. (2022). Second-order terminal sliding-mode speed controller for induction motor drives with nonlinear control gain. IEEE Transactions on Industrial Electronics, 70(11), 10923-10934.
[16] Belay, A., Salau, A. O., Kassahun, H. E., & Eneh, J. N. (2024). Stator flux estimation and hybrid sliding mode torque control of an induction motor. International Journal of System Assurance Engineering and Management, 15(6), 2541-2553.
[17] Aissa, O., Reffas, A., Krama, A., Benkercha, R., Talhaoui, H., & Abu-Rub, H. (2024). Advanced direct torque control based on neural tree controllers for induction motor drives. ISA transactions, 148, 92-104.
[18] Jannati, M., Idris, N. R. N., & Aziz, M. J. A. (2015). DTC Method for Vector Control of 3-Phase Induction Motor under Open-Phase Fault. TELKOMNIKA Indonesian Journal of Electrical Engineering, 13(2), 264-270.
[19] Shahid, M. B., Jin, W., Abbasi, M. A., Husain, A. R. B., Munir, H. M., Hassan, M., ... & Alghamdi, T. A. (2024). Model predictive control for energy efficient AC motor drives: An overview. IET Electric Power Applications, 18(12), 1894-1920.
[20] Boyar, A., Kabalci, E., & Kabalci, Y. (2024). Sensorless speed controller of an induction motor with MRAS-based model predictive control. Computers and Electrical Engineering, 118, 109350.
[21] Benbouhenni, H., Bizon, N., Colak, I., Iliescu, M., & Thounthong, P. (2024). A new direct torque control of an efficient and cost-effective traction system using two squirrel cage induction motors feed by a single inverter. Electric Power Components and Systems, 1-21.
[22] El-Sousy, F. F., Amin, M. M., & Mohammed, O. A. (2022). Robust adaptive neural network tracking control with optimized super-twisting sliding-mode technique for induction motor drive system. IEEE Transactions on Industry Applications, 58(3), 4134-4157.
[23] Kiran Kumar, B., Siva Reddy, Y. V., & Vijaya Kumar, M. (2021). Neuro fuzzy controller for DTC of induction motor using multilevel inverter with SVM. Journal of Circuits, Systems and Computers, 30(14), 2150250.
[24] Jannati, M., Anbaran, S., Zaheri, D. M., Idris, N. R. N., & Aziz, M. J. A. (2013, December). A new speed sensorless SVM-DTC in induction motor by using EKF. In 2013 IEEE Student Conference on Research and Development (pp. 94-99). IEEE.
[25] Elgbaily, M., Anayi, F., & Alshbib, M. M. (2022). A combined control scheme of direct torque control and field-oriented control algorithms for three-phase induction motor: Experimental validation. Mathematics, 10(20), 3842.
[26] Ding, C. W., & Tung, P. C. (2025). A New Approach to Field-Oriented Control That Substantially Improves the Efficiency of an Induction Motor with Speed Control. Applied Sciences, 15(9), 4845.
[27] Benmalek, E., Rayyam, M., Gege, A., Ennasiri, O., & Ezzaidi, A. (2024). AI-based field-oriented control for induction motors. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 14(4), 75-81.
[28] Mehbodniya, A., Kumar, P., Changqing, X., Webber, J. L., Mamodiya, U., Halifa, A., & Srinivasulu, C. (2022). Hybrid Optimization Approach for Energy Control in Electric Vehicle Controller for Regulation of Three-Phase Induction Motors. Mathematical problems in engineering, 2022(1), 6096983.
[29] Cataldo, P., Jara, W., Riedemann, J., Pesce, C., Andrade, I., & Pena, R. (2023). A predictive current control strategy for a medium-voltage open-end winding machine drive. Electronics, 12(5), 1070.
[30] Zhang, Q., Li, J., Lu, Y., & Zhou, Z. (2024). Direct field-oriented control of induction motor with discrete full-order flux observer. IEEE Transactions on Transportation Electrification, 10(4), 9416-9427.
[31] Benbouhenni, H., & Bizon, N. (2021). A synergetic sliding mode controller applied to direct field-oriented control of induction generator-based variable speed dual-rotor wind turbines. Energies, 14(15), 4437.
[32] Alnaib, I. I., & Alsammak, A. N. (2025). Optimization of fractional PI controller parameters for enhanced induction motor speed control via indirect field-oriented control. Electrical Engineering & Electromechanics, (1), 3-7.
[33] Alitasb, G. K. (2024). Integer PI, fractional PI and fractional PI data trained ANFIS speed controllers for indirect field oriented control of induction motor. Heliyon, 10(18).
[34] Nikpayam, M., Ghanbari, M., Esmaeli, A., & Jannati, M. (2020). An optimized vector control strategy for induction machines during open-phase failure condition using particle swarm optimization algorithm. International Transactions on Electrical Energy Systems, 30(12), e12669.
[35] Vas, P. (1998). Sensorless vector and direct torque control. Oxford university press.
[36] Zellouma, D., Bekakra, Y., & Benbouhenni, H. (2023). Field-oriented control based on parallel proportional–integral controllers of induction motor drive. Energy Reports, 9, 4846-4860.