The Effects of a Single Bout of Resistance Activity at Two Intensities with Different Recovery Periods on IL-6, ACTH, and BDNF Levels in Female Bodybuilders
Subject Areas : Journal of Physical Activity and Hormones
Azar Momtaz
1
,
Ramin Shabani
2
,
Alireza Elmieh
3
1 -
2 -
3 -
Keywords: Adrenocorticotropic hormone (ACTH), Brain-derived neurotrophic factor (BDNF), Female bodybuilders, Interleukin-6 (IL-6), Resistance exercise,
Abstract :
Introduction: Resistance exercise enhances physical performance and metabolic health, but responses vary based on intensity and recovery. This study investigated how different resistance training intensities and recovery periods affect interleukin-6 (IL-6), adrenocorticotropic hormone (ACTH), and brain-derived neurotrophic factor (BDNF) in female bodybuilders.
Material & Methods: Twelve healthy female bodybuilders (25–35 years) completed two weekly sessions for four weeks: moderate intensity (75% 1RM) with 1- or 2-minute recovery (MLRT1/MLRT2) and high intensity (85% 1RM) with 1- or 2-minute recovery (HLRT1/HLRT2). Blood samples were taken 36 hours post-exercise after fasting. Serum IL-6, ACTH, and BDNF levels were analyzed via SPSS (v27; p < 0.05).
Results: High-intensity training (85% 1RM) with 1-minute recovery significantly reduced IL-6 (p = 0.0001) and ACTH (p = 0.0001) while increasing BDNF (p = 0.0001) compared to lower intensities.
Conclusion: HLRT with short recovery did not impair immunity and was linked to lower IL-6/ACTH and higher BDNF, suggesting anti-inflammatory and neurotrophic benefits in female bodybuilders.
1. Cardiovascular diseases and cardiac biomarkers. Clin Chem Lab Med. 2023;61(s1):s469-s562. doi:10.1515/cclm-2023-7017.
2. Mumtaz A, Shabani R, Elmiyeh A. The effect of a period of resistance exercise with two different intensities and recovery on tumor necrosis factor alpha, 70 kDa heat shock protein, C-reactive protein, and brain-derived neurotrophic factor in the blood serum of female bodybuilders. J Jiroft Univ Med Sci. 2024;11(3):1667-78.
3. Acharyya S, Dutta S, Sengupta P. Adipokines as immune modulators in inflammation-mediated male infertility. J Integr Sci Technol. 2023;11(4):573. doi:10.18502/jist.v11i4.573.
4. Roberts FL, Markby GR. New insights into molecular mechanisms mediating adaptation to exercise: a review focusing on mitochondrial biogenesis, mitochondrial function, mitophagy and autophagy. Cells. 2021;10(10):2639. doi:10.3390/cells10102639.
5. Luk HY, Jones MT, Vingren JL. Effect of rest period configurations on systemic inflammatory response in resistance-trained women. J Sports Sci. 2021;39(13):1504-11. doi:10.1080/02640414.2021.1882726.
6. Luo Y, Zheng SG. Hall of fame among pro-inflammatory cytokines: interleukin-6 gene and its transcriptional regulation mechanisms. Front Immunol. 2016;7:604. doi:10.3389/fimmu.2016.00604.
7. Papargyri P, Zapanti E, Salakos N, Papargyris L, Bargiota A, Mastorakos G. Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders. Expert Rev Endocrinol Metab. 2018;13(6):317-32. doi:10.1080/17446651.2018.1543585.
8. Elliott BD. Effects of development on HPA function following pubertal stress.
9. Rothenberg DO, Zhang L. Mechanisms underlying the anti-depressive effects of regular tea consumption. Nutrients. 2019;11(6):1361. doi:10.3390/nu11061361.
10. Smith G, Thapak P, Paydar A, Ying Z, Gomez-Pinilla F, Harris NG. Altering the trajectory of perfusion-diffusion deficits using a BDNF mimetic acutely after TBI is associated with improved functional connectivity. Prog Neurobiol. 2023;10(1):10.60124/j.pneuro.2023.10.07. doi:10.60124/j.pneuro.2023.10.07.
11. Babiarz M, Laskowski R, Grzywacz T. Effects of strength training on BDNF in healthy young adults. Int J Environ Res Public Health. 2022;19(21):13795. doi:10.3390/ijerph192113795.
12. Liang Z, Zhang Z, Qi S, Yu J, Wei Z. Effects of a single bout of endurance exercise on brain-derived neurotrophic factor in humans: a systematic review and meta-analysis of randomized controlled trials. Biology. 2023;12(1):126. doi:10.3390/biology12010126.
13. Kang D, Koh S, Kim T, Bressel E, Kim D. Circuit training improves the levels of β-amyloid and brain-derived neurotrophic factor related to cognitive impairment risk factors in obese elderly Korean women. J Clin Med. 2024;13(3):799. doi:10.3390/jcm13030799.
14. Zhong YM, Zhang LL, Lu WT, Shang YN, Zhou HY. Corrigendum to "Moxibustion regulates the polarization of macrophages through the IL-4/STAT6 pathway in rheumatoid arthritis" [Cytokine 152 (2022) 155835]. Cytokine. 2022;154:155893. doi:10.1016/j.cyto.2022.155893.
15. Bunsawat K, Richardson RS. Sex as a biological variable in exercise prescription: a critical consideration in developing a road map for sex-related differences in cardiovascular research. Am J Physiol Heart Circ Physiol. 2023;324(1):H126-38. doi:10.1152/ajpheart.00427.2022.
16. Spielmann G, Simpson RJ. Exercise immunology and immunosenescence. In: Exercise Immunology. Routledge; 2013. p. 181-206.
17. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16(11):1335-47. doi:10.1096/fj.01-0876rev.
18. Schoenfeld BJ. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J Strength Cond Res. 2012;26(5):1441-53. doi:10.1519/JSC.0b013e31824f207e.
19. Reddy I, Yadav Y, Dey CS. Cellular and molecular regulation of exercise—a neuronal perspective. Cell Mol Neurobiol. 2023;43(4):1551-71. doi:10.1007/s10571-022-01271-4.
20. Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol. 2017;122(3):559-70. doi:10.1152/japplphysiol.00971.2016.
21. Gomes JH, Mendes RR, Franca CS, Da Silva-Grigoletto ME, Pereira da Silva DR, Antoniolli AR, et al. Acute leucocyte, muscle damage, and stress marker responses to high-intensity functional training. PLoS One. 2020;15(12):e0243276. doi:10.1371/journal.pone.0243276.
22. Bishop NC. Exercise, infection risk, immune function and inflammation. In: Exercise Immunology. Routledge; 2013. p. 318.
23. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O'Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi:10.1038/nrd.2017.201.
24. Steiner JL, Johnson BR, Hickner RC, Ormsbee MJ, Williamson DL, Gordon BS. Adrenal stress hormone action in skeletal muscle during exercise training: an old dog with new tricks? Acta Physiol (Oxf). 2021;231(1):e13522. doi:10.1111/apha.13522.
25. Whorwood CB, Donovan SJ, Wood PJ, Phillips DI. Regulation of glucocorticoid receptor α and β isoforms and type I 11β-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance? J Clin Endocrinol Metab. 2001;86(5):2296-308. doi:10.1210/jcem.86.5.7504.
26. Talebi N, Shah Mansouri Z, Hassani F. Effect of home-based resistance training on the serum levels of interleukin-6 and cortisol in recovered women from COVID-19: a pilot study. Immunoregulation. 2023;5(2):113-20. doi:10.32598/Immunoregulation.5.2.113.
27. Córdova-Martínez A, Caballero-García A, Bello HJ, Pérez-Valdecantos D, Roche E. Effect of glutamine supplementation on muscular damage biomarkers in professional basketball players. Nutrients. 2021;13(6):2073. doi:10.3390/nu13062073.
28. Bermejo JL, Valldecabres R, Villarrasa-Sapiña I, Monfort-Torres G, Marco-Ahulló A, Do Couto BR. Increased cortisol levels caused by acute resistance physical exercise impair memory and learning ability. PeerJ. 2022;10:e13000. doi:10.7717/peerj.13000.
29. Praw SS, Brent GA. Approach to the patient with a suppressed TSH. J Clin Endocrinol Metab. 2023;108(2):472-82. doi:10.1210/clinem/dgac638.
30. Castellanos DB, Martín-Jiménez CA, Rojas-Rodríguez F, Barreto GE, González J. Brain lipidomics as a rising field in neurodegenerative contexts: perspectives with machine learning approaches. Front Neuroendocrinol. 2021;61:100899. doi:10.1016/j.yfrne.2021.100899.
31. Battaglia CR, Cursano S, Calzia E, Catanese A, Boeckers TM. Corticotropin-releasing hormone (CRH) alters mitochondrial morphology and function by activating the NF-kB-DRP1 axis in hippocampal neurons. Cell Death Dis. 2020;11(11):1004. doi:10.1038/s41419-020-03204-3.
32. Wang CA, Attia JR, Lye SJ, Oddy WH, Beilin L, Mori TA, et al. The interactions between genetics and early childhood nutrition influence adult cardiometabolic risk factors. Sci Rep. 2021;11(1):14826. doi:10.1038/s41598-021-94226-5.
33. Soo J, Raman A, Lawler N, Goods P, Deldicque L, Girard O, et al. The role of exercise and hypoxia on glucose transport and regulation. Eur J Appl Physiol. 2023;123(6):1147-65. doi:10.1007/s00421-023-05183-5.
34. Zeng ML, Kong S, Chen TX, Peng BW. Transient receptor potential vanilloid 4: a double-edged sword in the central nervous system. Mol Neurobiol. 2023;60(3):1232-49. doi:10.1007/s12035-022-03139-8.
35. Zheng W, Feng Y, Zeng Z, Ye M, Wang M, Liu X, et al. Choroid plexus-selective inactivation of adenosine A2A receptors protects against T cell infiltration and experimental autoimmune encephalomyelitis. J Neuroinflammation. 2022;19(1):52. doi:10.1186/s12974-022-02415-z.
36. Arazi H, Babaei P, Moghimi M, Asadi A. Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men. BMC Geriatr. 2021;21:71. doi:10.1186/s12877-021-02063-2.
37. Silveira-Rodrigues JG, Campos BT, de Lima AT, Ogando PH, Gomes CB, Gomes PF, et al. Acute bouts of aerobic and resistance exercise similarly alter inhibitory control and response time while inversely modifying plasma BDNF concentrations in middle-aged and older adults with type 2 diabetes. Exp Brain Res. 2023;241(4):1173-83. doi:10.1007/s00221-023-06579-9.
38. Hatfield DL, Kraemer WJ, Volek JS, Nindl BC, Caldwell LK, Vingren JL, et al. Hormonal stress responses of growth hormone and insulin-like growth factor-I in highly resistance trained women and men. Growth Horm IGF Res. 2021;59:101407. doi:10.1016/j.ghir.2021.101407.
39. Bosch BPM. Effect of acute physical exercise on memory consolidation.