Effect of Artificial Deterioration on Germination Characteristics and Use of Seed Reserves in Bean
Subject Areas : Plant physiology
1 -
Keywords: Seed deterioration, seed reserves, seed quality, beans,
Abstract :
This study was conducted to investigate the effect of artificial deterioration on seed germination and heterotrophic growth of bean seedlings. The experiment was conducted in a completely randomized design with four replications. The treatments included different levels of artificial deterioration for 12, 24, 36, 48, 60, 72 and 84 hours. The results showed that the effect of accelerated deterioration treatment on the traits of seed germination percentage, seed germination rate, electrical conductivity, rootlet length, shoot length, seedling dry weight, seed vigor index, remaining cotyledon dry weight, reserve utilization rate, seed reserve utilization efficiency and fraction of mobilized reserves was significant. The results of mean comparisons showed that increasing the duration of seed deterioration led to a decrease in the percentage and rate of seed germination, so that in the 84-hour deterioration condition, the percentage of germination decreased from 96 to 21 percent and the rate of germination decreased from 0.033 to 0.018 per hour. The electrical conductivity also increased with increasing the duration of natural storage due to the inability of the membranes to maintain their integrity and reached 71 µs/cm in the 84-hour deterioration condition. With increasing the severity of deterioration from 12 to 84 hours, the length of the radicle and stem decreased and it was observed that the length of the radicle and stem in these two treatments was 2.5 and 2.8 cm, respectively. With increasing the duration of seed deterioration from 12 to 84 hours, the weight of the remaining cotyledons of bean seeds increased so that the highest cotyledon weight of 186 mg was obtained in the artificial deterioration treatment of 84 hours..
حسینی، ف. 1387. بررسی اثر زوال بذر بر جوانه زنی، استقرار و عملکرد پنج رقم کلزا در شرایط آب و هوایی اهواز . پایان نامه کارشناسی ارشد دانشگاه کشاورزی و منابع طبیعی اهواز ، اهواز، ایران.
زمردی، م.، محمودی، م.، خواجه حسینی، م.، قشم، ر. و س، انورخواه. 1392. بررسی اثر پرایمینگ و پیری مصنوعی بر جوانه زنی بذر ارقام گوجه فرنگی. نشریه تحقیقات کاربردی اکوفیزیولوژی گیاهی، 1(1): 97-114.
سلطانی، ا. و و، مداح. 1389. برنامههای کاربردی ساده برای آموزش و پژوهش در کشاورزی. انجمن علمی بوم شناختی ایران. 71 صفحه.
سلطانی، ا.، کامکار، ب.، گالشی، س. و ف، اکرم قادری. 1387. اثر زوال بذر بر ذخایر ژنتیکی بذور و رشد هتروتروفیک گیاهچه گندم. مجله علوم کشاورزی و منابع طبیعی، 15(1): 76-68.
محسن نسب، ف.، شرفی زاده، م. و ع، سیادت. 1389. بررسی اثر زوال بذر )پیری تسریع شده( بر جوانه زنی و رشد گیاهچهی ارقام گندم در شرایط آزمایشگاه. فصلنامه علمی پژوهشی فیزیولوژی گیاهان زراعی، 2(7): 87-90.
محمدزاده، ا.، اسدی، ص.، مجنون حسینی، ن.، مقدم، ح. و م، جمالی، م. 1397. اثر پیری مصنوعی بذر بر شاخصهای جوانهزنی، استقرار گیاهچه و عملکرد دو رقم لوبیا قرمز. "نشریه علوم و فناوری بذر ایران، 7(2): 94-75.
مؤمنی، ج.، شکرپور، م.، صدقی، م.، انتصاري ، م. وا، عباسیان. 1392. تأثیر زوال تسریع شده و تنش خشکی بر برخی صفات فیزیولوژیک و مورفولوژیک گندم در شرایط آزمایشگاهی. نشریه علوم و فناوري بذر ایران، 2(2): 229-239.
Agrawal, R. 2003. Seed technology . Pub . Co . PVT . LTD . New Delhi . India
Castellión, M., Matiacevich, S., Buera, P. and S, Maldonado. 2010. Protein deterioration and longevity of quinoa seeds during long-term storage. Food Chemistry, 121: 952–958.
Chen, C., Wang, R., Dong, S., Wang, J., Ren, C.X., Chen, C.P., Yan, J., Zhou, T., Wu, Q.H., and J, Pei.2022. Integrated proteome and lipidome analysis of naturally aged safflower seeds varying in vitality. Plant Biology, 24: 266–277.
Dantas, A.F., Fascineli, M.L., José, S.C.B.R., Pádua, J.G., Gimenes, M.A. and C.K, Grisolia. 2019. Loss of genetic integrity in artificially aged seed lots of rice (Oryza sativa L.) and common bean (Phaseolus vulgaris L.). Mutat. Res. Genet. Toxicol. Environ. Mutagen, 846: 403080.
Gill, S. S. and N, Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909-930.
Hampton, J. C. and D.M, Tekrony. 1995. Hand book of vigor test and method (3rd Eds). International seed testing association (ISTA), Zurich, Switzerland.
Huang, Y., Cai, S., Ruan, X., Xu, J. and D, Cao. 2021. CSN improves seed vigor of aged sunflower seeds by regulating the fatty acid, glycometabolism, and abscisic acid metabolism. Journal of Advanced Research, 33: 1–13.
International Seed Testing Association. 1985. International Rules for Seed Testing. Annexes 1985. Seed Science and Technology 13: 356-513.
Jonathan, M. E., Bárbara, C. F., Silva, R. S., João, A. A., Granja, Maria, C. J. L., Alves, M., and F, Pompelli. 2013. Germination responses of Jatropha curcas L. seeds to storage and aging. Industrial Crops and Products, 44: 684–690.
Kiran, K.R., Deepika, V.B., Swathy, P.S., Prasad, K., Kabekkodu, S.P., Murali, T.S., Satyamoorthy, K. and A, Muthusamy. 2020. ROS dependent DNA damage and repair during germination of NaCl primed seeds. Journal of Photochemistry and Photobiology, B 2020: 21
Lv, T., Li, J., Zhou, L., Zhou, T., Pritchard, H.W., Ren, C., Chen, J., Yan, J. and J, Pei. 2024. Aging-Induced Reduction in Safflower Seed Germination via Impaired Energy Metabolism and Genetic Integrity Is Partially Restored by Sucrose and DA-6 Treatment. Plants 2024, 13, 659. https://doi.org/10.3390/
Maesaroh, S., Wahyu, Y. and E, Widajati. 2021. Seed storability and genetic parameters estimation on accelerated aging seed of argomulyo soybean (Glycine max (L.) Merr.) mutant lines. Journal of Agricultural Sciences, 31(3): 763- 775.
McDonald, M. B. 1999. Seed deterioation: Physiology, repair and assessment. Seed Science and Technology, 27: 177- 237.
Murthy, U. M. N., Kumar, P. P. and W.Q, Sun. 2003. Mechanisms of seed ageing under different storage conditions for Vigna radiate (L.) Wilczek: lipid peroxidation, sugar hydrolysis, Maillard reactions and their relationship to glass state transition. Journal of Exprimental Botany, 54: 1057-1067.
Narayana, U. M. and Q.S, Wendell. 2000. Protein modification by amadori and maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. Journal of Experimental Botany, 348: 1221-1228.
Panobianco, M., Vieira, R. D. and D. Perecin. 2007. Electrical conductivity as an indicator of pea seed aging of stored at different temperatures. Sciencia Agriculture, 64: 119–124.
Parvin, S., Anwar, P., Kabiraj, S., Rashid, H. and S.K, Paul. 2024. Improvement of Seed Germination and Seedling Growth of Faba Bean (Vicia Faba L.) through Seed Priming. Turkish Journal of Agriculture - Food Science and Technology, 12(4): 561-567.
Rajendra, D., Satpute, A. and P, Sanjay. 2018. Studies on physiology of soybean seeds by applying tool of accelerated aging test for vigor assessment. Journal of Pharma and Bio Sciences, 7(3): 12- 23.
Roy, S., Das, S., Saha, K. K., Rahman, M. R., Sarkar, S. K., Rashid, M. H., and S.K, Paul. 2022. Growth and seed yield of faba bean (Vicia faba L.) as influenced by zinc and boron micronutrients. Fundamental and Applied Agriculture, 7(2): 139-149. https://doi.org/10.5455/faa.106842.
Santos, R.F., Placido, H.F., Bosche, L.L., Neto, H.Z., Ferando, H. and B, Alessandro. 2021. Accelerated aging methodologies for evaluating physiological potential of treated soybean seeds. Journal of Seed Science, 43: 1-12.
Sun, W. Q. and A.C, Leopold. 1995. The Maillard reaction and oxidative stress during aging of soybean seeds. Plant Physiology, 94: 94–104.
Wiebach, J., Nagel, M., Börner, A., Altmann, T., Riewe, D. 2020. Age-dependent loss of seed viability is associated with increased lipid oxidation and hydrolysis. Plant Cell Environment, 43: 303–314.
Xiong, Y., Ren, Y., Li, W., Wu, F., Yang, W., Huang, X. and J, Yao. 2019. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. Journal of Experimental Botany, 70: 3765–3780.
Yanglem, S. D., Ram, V., Rangappa, K., and N, Deshmukh. 2021. Effects of seed priming on root- shoot behavior and stress tolerance of pea (Pisum sativum L.). Bangladesh Journal of Botany, 50(2): 199-208. https://doi.org/10.3329/bjb.v50i2.5407.
Yu, S., Zhu, X., Yang, H., Yu, L. and Y, Zhang. 2021. A simple new method for aged seed utilization based on melatonin mediated germination and antioxidant nutrient production. Scientific Reports, 11: 1-7.
Zhou, W., Chen, F., Luo, X., Dai, Y., Yang, Y., Zheng, C., Yang, W. and K.A, Shu. 2020. Matter of life and death: Molecular, physiological, and environmental regulation of seed longevity. Plant Cell Environment, 43: 293–302.
Zhou, W., Chen, F., Zhao, S., Yang, C., Meng, Y., Shuai, H., Luo, X., Dai, Y., Yin, H. and J, Du. 2019. DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. Journal of Experimental Botany, 70: 101–114.