The Effectiveness of Combining Empirical Decomposition Mode and Machine Learning Tools on Bitcoin Volatility Prediction
Subject Areas : Financial Economics
Leili Nikbakht
1
,
Shahram Fattahi
2
,
Abbas Aflatooni
3
,
Aghdas Ghomsheh
4
1 -
2 -
3 -
4 -
Keywords: Bitcoin, Empirical Decomposition Mode (EMD) , Artificial Neural Network (ANN), Recurrent Neural Network (RNN) Long Short-Term Memory (LSTM),
Abstract :
This study explores whether combining Empirical Mode Decomposition (EMD) with machine learning models Artificial Neural Networks (ANN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM)—can improve the accuracy of Bitcoin price volatility (VBTC) predictions. Utilizing daily Bitcoin price data from September 2011 to December 2024, the research, conducted using R software, compares the performance of hybrid models (EMD-ANN, EMD-RNN, EMD-LSTM) against standalone machine learning models and traditional time series methods like ARIMA. The results demonstrate that hybrid models significantly outperform their non-hybrid counterparts, with the EMD-RNN model achieving the highest accuracy, reducing Mean Absolute Error (MAE) by 95.76% and Root Mean Squared Error (RMSE) by 96.35%. The decomposition of VBTC into Intrinsic Mode Functions (IMFs) revealed distinct short-term and long-term volatility components, providing deeper insights into market behavior. The findings highlight the superiority of integrating EMD with machine learning for volatility forecasting, offering enhanced predictive accuracy and robustness. This research underscores the potential of advanced analytical techniques in improving risk management and investment strategies in highly volatile cryptocurrency markets.
|
|
[1] Alam, M. Z., Siddikee, M. N., Masukujjaman, M., Forecasting volatility of stock indices with ARCH model, International Journal of Financial Research, 2013; 4(2): 126-143. Doi:10.5430/ijfr.v4n2p126
[2] Bai, J., Guo, J., Sun, B., Guo, Y., Bao, Q., Xiao, X., Intelligent forecasting model of stock price using neighborhood rough set and multivariate empirical mode decomposition, Engineering Applications of Artificial Intelligence, 2023; 122: 106106. Doi:10.1016/j.engappai.2023.106106
[3] Bhowmik, R., Wang, S., Stock market volatility and return analysis: A systematic literature review, Entropy, 2020; 22(5): 522. Doi:10.3390/e22050522
[4] Bucci, A., Realized volatility forecasting with neural networks, Journal of Financial Econometrics, 2020; 18(3): 502-531. Doi:10.1093/jjfinec/nbaa008
[5] Cao, J., Wang, J., Exploration of stock index change prediction model based on the combination of principal component analysis and artificial neural network, Soft Computing, 2020; 24: 7851-7860. Doi:10.1007/s00500-019-03918-3
[6] Cao, J., Li, Z., Li, J., Financial time series forecasting model based on CEEMDAN and LSTM, Physica A: Statistical Mechanics and its Applications, 2019; 519: 127-139. Doi:10.1016/j.physa.2018.11.061
[7] Chen, J., Chen, H., Huo, Y., Gao, W., Application of SVR models in stock index forecast based on different parameter search methods, Open Journal of Statistics, 2017; 7(2): 194-202. Doi:10.4236/ojs.2017.72015
[8] Chen, Y., Ye, N., Zhang, W., Fan, J., Mumtaz, S., Li, X., Meta-LSTR: Meta-Learning with Long Short-Term Transformer for futures volatility prediction, Expert Systems with Applications, 2025; 15(1): 125926. Doi:10.1016/j.eswa.2024.125926
[9] De Souza, U. B., Escola, J. P. L., da Cunha Brito, L., A survey on Hilbert-Huang transform: Evolution, challenges and solutions. Digital Signal Processing, 2022; 120: 103292. Doi:10.1016/j.dsp.2021.103292
[10] Dezhkam, A., Manzuri, M. T., Forecasting stock market for an efficient portfolio by combining XGBoost and Hilbert-Huang transform, Engineering Applications of Artificial Intelligence, 2023; 118: 105626. Doi:10.1016/j.engappai.2022.105626
[11] Di-Giorgi, G., Salas, R., Avaria, R., Ubal, C., Rosas, H., Torres, R., Volatility forecasting using deep recurrent neural networks as GARCH models, Computational Statistics, 2023; 36(1): 1-27. Doi:10.1007/s00180-023-01349-1
[12] Gao, Z., Zhang, J., The fluctuation correlation between investor sentiment and stock index using VMD-LSTM: Evidence from China stock market, The North American Journal of Economics and Finance, 2023; 66: 101915. Doi:0.1016/j.najef.2023.101915
[13] García Cabello, J. Mathematical neural networks. Axioms, 2022; 11(2): 80. Doi:10.3390/axioms11020080
[14] Gunnarsson, E. S., Isern, H. R., Kaloudis, A., Risstad, M., Vigdel, B., Westgaard, S., Prediction of realized volatility and implied volatility indices using AI and machine learning: A review, International Review of Financial Analysis, 2024; 103221. Doi:10.1016/j.irfa.2024.103221
[15] Huang, N. E., Introduction to Hilbert-Huang transform and some recent developments, In The Hilbert-Huang Transform in Engineering, 2005; (pp. 1-23). CRC Press. Doi:10.1201/9781420027532.ch1
[16] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Liu, H. H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998; 454(1971): 903-995. Doi:10.1098/rspa.1998.0193
[17] Huang, Y., Deng, C., Zhang, X., Bao, Y., Forecasting of stock price index using support vector regression with multivariate empirical mode decomposition, Journal of Systems and Information Technology, 2022; 24(2): 75-95. Doi:10.1108/JSIT-12-2019-0262
[18] Jarno, K., Kołodziejczyk, H., Does the design of stablecoins impact their volatility? Journal of Risk and Financial Management, 2021; 14(2): 1-14. Doi:10.3390/jrfm14020042
[19] Junior, P. R., Salomon, F. L. R., de Oliveira Pamplona, E., ARIMA: An applied time series forecasting model for the Bovespa stock index, Applied Mathematics, 2014; 5(21): 3383-3391. Doi:10.4236/am.2014.521315.
[20] Kelany, O., Aly, S., Ismail, M. A., Deep learning model for financial time series prediction, 2020 14th International Conference on Innovations in Information Technology (IIT), 2020; 120-125. IEEE. Doi:10.1109/IIT50501.2020.9299063
[21] Kocak, C., ARMA (p, q) type high order fuzzy time series forecast method based on fuzzy logic relations, Applied Soft Computing, 2017; 58: 92-103. Doi:10.1016/j.asoc.2017.04.021
[22] Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I., Matsopoulos, G. K., A review of ARIMA vs. machine learning approaches for time series forecasting in data driven networks, Future Internet, 2023; 15(8), 255. Doi:10.3390/fi15080255
[23] Koosha, E., Seighaly, M., Abbasi, E., Predicting the top and bottom prices of Bitcoin using ensemble machine learning, Advances in Mathematical Finance and Applications, 2023, 8(3): 895-913. Doi:10.22034/amfa.2022.1967972.1802
[24] Lee, B., Volatility, The Routledge Handbook of Critical Finance Studies, 2020; 46-72. Routledge. https://library.oapen.org/handle/20.500.12657/41634
[25] Li, H., Zhou, D., Hu, J., Li, J., Su, M., Guo, L., Forecasting the realized volatility of Energy Stock Market: A multimodel comparison, The North American Journal of Economics and Finance, 2023; 66: 101895. Doi:10.1016/j.najef.2023.101895
[26] Li, Y., Bu, H., Li, J., Wu, J., The role of text-extracted investor sentiment in Chinese stock price prediction with the enhancement of deep learning, International Journal of Forecasting, 2020; 36(4): 1541-1562. Doi:10.1016/j.ijforecast.2020.05.001
[27] Lin, C. S., Chiu, S. H., Lin, T. Y., Empirical mode decomposition-based least squares support vector regression for foreign exchange rate forecasting, Economic Modelling, 2012; 29(6): 2583-2590. Doi:10.1016/j.econmod.2012.07.018
[28] Lin, L., Jiang, Y., Xiao, H., Zhou, Z., Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model, Physica A: Statistical Mechanics and its Applications, 2020; 543: 123532. Doi:10.1016/j.physa.2019.123532
[29] Lin, Y., Yan, Y., Xu, J., Liao, Y., Ma, F., Forecasting stock index price using the CEEMDAN-LSTM model, The North American Journal of Economics and Finance, 2021; 57: 101421. Doi:10.1016/j.najef.2021.101421
[30] Lin, Y., Yu, Y. Y., Zhang, X., Yue, Y. Y., Liu, X., Research on crude oil futures price forecasting based on error correction and deep reinforcement learning, Systems Engineering - Theory & Practice, 2023; 43(1): 206-221. Doi:10.12011/SETP2022-0980
[31] Lin, Z., Modelling and forecasting the stock market volatility of SSE Composite Index using GARCH models, Future Generation Computer Systems, 2018; 79: 960-972. Doi:10.1016/j.future.2017.08.033
[32] Nayak, R. K., Mishra, D., Rath, A. K., A Naïve SVM-KNN based stock market trend reversal analysis for Indian benchmark indices, Applied Soft Computing, 2015; 35: 670-680. Doi:10.1016/j.asoc.2015.06.040
[33] Rather, A.M., LSTM-based deep learning model for stock prediction and predictive optimization model, EURO Journal on Decision Processes, 2021; 9: 100001. Doi:10.1016/j.ejdp.2021.100001
[34] Rehman, N., Mandic, D. P., Multivariate empirical mode decomposition, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010; 466(2117): 1291-1302. Doi:10.1098/rspa.2009.0502
[35] Rilling, G., Flandrin, P., Gonçalves, P., Lilly, J. M., Bivariate empirical mode decomposition, IEEE Signal Processing Letters, 2007; 14(12), 936-939. Doi:10.1109/LSP.2007.904710
[36] Risse, M., Combining wavelet decomposition with machine learning to forecast gold returns, International Journal of Forecasting, 2019; 35(2): 601-615. Doi:10.1016/j.ijforecast.2018.11.008
[37] Sadorsky, P., Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices? The North American Journal of Economics and Finance, 2022; 61: 101705. Doi:10.1016/j.najef.2022.101705
[38] Sheta, A. F., Ahmed, S. E. M., Faris, H., A comparison between regression, artificial neural networks and support vector machines for predicting stock market index, Soft Computing, 2015; 7(8): 55-63. http://dx.doi.org/10.14569/IJARAI.2015.040710
[39] Souropanis, I., Vivian, A., Forecasting realized volatility with wavelet decomposition, Journal of Empirical Finance, 2023; 74: 101432. Doi:10.1016/j.jempfin.2023.101432
[40] Tan, J., Li, Z., Zhang, C., Shi, L., Jiang, Y., A multiscale time-series decomposition learning for crude oil price forecasting, Energy Economics, 2024; 136: 107733. Doi:10.1016/j.eneco.2024.107733
[41] Tavakoli, M., Doosti, H., Chesneau, C., Capsule network regression using information measures: an application in Bitcoin market, Advances in Mathematical Finance and Applications, 2022; 7(1): 37-48. Doi:10.22034/amfa.2021.1932547.1603
[42] Wang, J., Cui, Q., Sun, X., He, M., Asian stock markets closing index forecast based on secondary decomposition, multi-factor analysis and attention-based LSTM model, Engineering Applications of Artificial Intelligence, 2022; 113: 104908. Doi:10.1016/j.engappai.2022.104908
[43] Wang, J., Wang, X., Wang, X., International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models, The North American Journal of Economics and Finance, 2024; 70: 102065. Doi:10.1016/j.najef.2023.102065
[44] Wang, L., Ma, F., Liu, J., Yang, L., Forecasting stock price volatility: New evidence from the GARCH-MIDAS model, International Journal of Forecasting, 2020; 36(2): 684-694. Doi:10.1016/j.ijforecast.2019.08.005
[45] Wang, Y., Wei, Y., Wu, C., Yin, L., Oil and the short-term predictability of stock return volatility, Journal of Empirical Finance, 2018; 47: 90-104. Doi:10.1016/j.jempfin.2018.03.002
[46] Yadav, M. P., Sharma, S., Bhardwaj, I., Volatility spill-over between Chinese stock market and selected emerging economies: A dynamic conditional correlation and portfolio optimization perspective, Asia-Pacific Financial Markets, 2023; 30(2): 427-444. Doi:10.1007/s10690-022-09381-9
[47] Yan, Z., Tian, F., Sun, Y., Wang, S., A time-frequency-based interval decomposition ensemble method for forecasting gasoil prices under the trend of low-carbon development, Energy Economics, 2024; 134: 107609. Doi:10.1016/j.eneco.2024.107609
[48] Yao, Y., Zhang, Z. Y., Zhao, Y., Stock index forecasting based on multivariate empirical mode decomposition and temporal convolutional networks, Applied Soft Computing, 2023; 142: 110356. Doi:10.1016/j.asoc.2023.110356
[49] Yıldırım, H., Bekun, F. V., Predicting volatility of bitcoin returns with ARCH, GARCH and EGARCH models, Future Business Journal, 2023; 9(1): 75. Doi:10.1186/s43093-023-00255-8
[50] Zaj, M. M., Samavi, M. E., Koosha, E., Measurement of Bitcoin daily and monthly price prediction error using grey model, back propagation artificial neural net-work and integrated model of grey neural network, Advances in Mathematical Finance and Applications, 2022; 3(7): 535-553. Doi:10.22034/amfa.2020.1881110.1315
[51] Zarzycki, K., Ławryńczuk, M., LSTM and GRU neural networks as models of dynamical processes used in predictive control: A comparison of models developed for two chemical reactors, Sensors, 2021; 21(16): 5625. Doi:10.3390/s21165625
[52] Zhang, J., Liu, H., Bai, W., Li, X., A hybrid approach of wavelet transform, ARIMA and LSTM model for the share price index futures forecasting, The North American Journal of Economics and Finance, 2024; 69: 102022. Doi:10.1016/j.najef.2023.102022
[53] Zhang, K., Gençay, R., Yazgan, M. E., Application of wavelet decomposition in time-series forecasting, Economics Letters, 2017; 158: 41-46. Doi:10.1016/j.econlet.2017.06.010
[54] Zhang, K., Yang, X., Wang, T., Thé, J., Tan, Z., Yu, H., Multi-step carbon price forecasting using a hybrid model based on multivariate decomposition strategy and deep learning algorithms, Journal of Cleaner Production, 2023; 405: 136959. Doi:10.1016/j.jclepro.2023.136959
[55] Zhang, Z., Duan, F., Sole-Casals, J., Dinares-Ferran, J., Cichocki, A., Yang, Z., Sun, Z., A novel deep learning approach with data augmentation to classify motor imagery signals, IEEE Access, 2019; 7: 15945-15954. Doi:10.1109/ACCESS.2019.2895133
[56] Zhao, L. T., Zheng, Z. Y., Wei, Y. M., Forecasting oil inventory changes with Google trends: A hybrid wavelet decomposer and ARDL-SVR ensemble model, Energy Economics, 2023; 120: 106603. Doi:10.1016/j.eneco.2023.106603