Evaluation of physicochemical properties of Enteromorpha and Chaetomorpha macroalgae
Subject Areas : Nutraceutical Foods and Bioactive Extracts (Nutraceutic Foods Bioact. Ext.)Sedigheh Hozhabrian nazarinazari 1
1 -
Keywords: Enteromorpha, Bioactive compounds, Antioxidant properties, Chaetomorpha, Macroalgae,
Abstract :
The use of lipid-based active compounds of algae in foods is growing. Therefore, the objective of this study was to evaluate the biochemical properties of the macroalgae Enteromorpha and Chaetomorpha species. In the present study, Enteromorpha and Chaetomorpha were extracted, and fat content, total protein, total phenolic content using the Folin-Ciucalteu colorimetric method, antioxidant capacity by ABTS radical scavenging assay, and fatty acid profiles using gas chromatograph (GC) with a flame ionization detector (FID) were measured. The results showed that the total fat contents of Chaetomorpha and Enteromorpha were 0.3 and 0.4, respectively. The protein content of Chaetomorpha was 12.54 mg/mL. The phenolic content increased as the concentration of the algae extract increased, indicating a positive relationship between the concentration and phenolic content of the extracts. Also, the highest antioxidant capacity was observed for Chaetomorpha (the highest percent inhibition of ABTS free radical and lowest IC50 values), and the lowest antioxidant capacity was found for Enteromorpha (the lowest percent inhibition of ABTS free radical and highest IC50 values) (p < 0.05). Among the identified fatty acids, the highest amount was observed for palmitic acid (Enteromorpha < Chaetomorpha), followed by oleic (Enteromorpha < Chaetomorpha) and linoleic (Enteromorpha < Chaetomorpha) acids. Therefore, macroalgae can be introduced as species with bioactivity because of their large amounts of beneficial bioactive compounds such as phenols, high antioxidant capacity and the presence of fatty acids/omega-3 and omega-6.
References
Ahmadi E.; Elhamirad A. H.; Mollania N.; Saeidi Asl M. R; Pedramnia A. 2021. Incorporation of white tea extract in nanoliposomes: optimization, characterization, and stability. J Sci Food Agric
Assadi, T.; Bargahi, A.; Mohebbi, G. H. 2013. Determination of oil and fatty acids concentration in seeds of coastal halophytic Sueada aegyptica. Iran South Med J; 16 (1):9-16.
Auwal S. M.; Zarei M.; Tan C. P.; Saari N. 2018. Comparative physicochemical stability and efficacy study of lipoid S75-biopeptides nanoliposome composite produced by conventional and direct heating methods. International Journal of Food Properties. 21. 1, 1646–1660
Bahrani, S.; Ghanbarzadeh, B.; Hamisheh kar, H.; Soti Khiabani, M. 2013. Nanoencapsulation of omega-3 fatty acids by pectin-caseinate carriers: Investigation of complex formation, particle size and encapsulation efficiency, Iranian Journal of Nutrition Science and Food Industry, 8 (3): 1–15.
Bao S.; Hu X. C.; Zhang K.; Xu X. K.; Zhang H. M.; Huang H. 2011. Characterization of Spray-Dried Microalgal Oil Encapsulated in Cross-Linked Sodium Caseinate Matrix Induced by Microbial Transglutaminase. Journal of Food Science. 76, 1.
Biris-Dorhoi E. S.; Michiu D. R.; Pop C. M.; Rotar A.; Tofana A. L.; Pop Q.A.; Socaci S. C.; Farcas A. 2020. Review. Macroalgae-A Sustainable Sourc of Chemical Compounds with Biological Activities. Nutrients, 12, 3085.
Bonilla-Ahumada, F.; Khandual S.; Lugo-Cervantes E. 2018. Microencapsulation of algal biomass (Tetraselmis chuii) by spray-drying using different encapsulation materials for better preservation of betacarotene and antioxidant compounds . Algal Research. 36, 229-238.
Cagalj M.; Skroza D.; Tabanelli G.; Özogul F.; Šimat V. 2021. Maximizing the Antioxidant Capacity of Padina pavonica by Choosing the Right Drying and Extraction Methods. Processes, 9, 587.
Cai Y.; Lim H. R.; Khoo K. S.; Ng, H. S.; Cai Y.; Wang J.; Chan, T. Y.; Show, P. L. 2021. An integration study of microalgae bioactive retention: From microalgae biomass to microalgae bioactives nanoparticle. Food and Chemical Toxicology. 158, 112607.
Castejon N.; Luna P.; Javier Senorans F. 2021. Microencapsulation by spray drying of omega-3 lipids extracted from oilseeds and microalgae: Effect on polyunsaturated fatty acid composition. LWT. 148, 111789
Chellappan D. K.; Chellian, J.; Leong J. Q.; Liaw, Y.; Gupta, G.; Dua, K.; Kunnath, A. P.; Palaniveloo, K. 2020. Biological and therapeutic potential of the edible brown marine seaweed Padina australis and their pharmacological mechanisms. Journal of Tropical Biology and Conservation. 17: 251-271.
Jafari, S. M.; Assadpoor, E.; He, Y.; Bhandari, B. 2008. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816-835.
Kalasariya, H.; Patel, N.; Yadav, A.; Perveen, K.; Yadav, V.; Munshi, F.; Yadav, K.; Alam, S.; Jung, Y.; Jeon, B. 2021. Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha crassa and Evaluation of Their Potentials in Skin Cosmetics. Molecules, 26, 7515
Kuznetcova, D.; Linder, M.; Jeandel, C.; Paris, C.; Desor, F. A.; Baranenko, D. A.; Nadtochii L.; Arab-Tehrany E. T.; Yen, F. 2020. Nanoliposomes and Nanoemulsions Based on Chia Seed Lipids: Preparation and Characterization. Int. J. Mol. Sci. 21, 9079.
Lang, I.; Hodac, L.; Friedl, T.; Feussner, I. 2011. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 11, 124
Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. 2008 Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliver Rev, 60:1650-62
López-lópez, I.; Bastida, S.; Ruiz-capillas, C.; Bravo, L.; Larrea, M.; Sánchez-muniz, F.; Cofrades, S.; Jiménez-colmenero, F. 2009. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Science. 83, 492-498.
Mu, H.; Song, Z.; Wang X.; Wang, D.; Zheng, X.; Li, X. 2022. Microencapsulation of algae oil by complex coacervation of chitosan and modified starch: Characterization and oxidative stability. International Journal of Biological Macromolecules. 194, 1, 66-73.
Oliver, L.; Dietrich, T.; Marañón, I.; Villarán, M. C.; Barrio, R. 2020. Review. Producing Omega-3 Polyunsaturated Fatty Acids: A Review of Sustainable Sources and Future Trends for the EPA and DHA Market. Resources, 9, 148
Ponnanikajamideen, M., Malini, M.; Malarkodi, C.; Rajeshkumar. 2014. Bioactivity and phytochemical constituents of marine brown seaweed (Padina tetrastromatica) extract from various organic solvents. International Journal of Pharmacy and Therapeutics, 5(2): 108-112.
Prieto, C.; Talón, E.; Lagaron, J. M. 2021. Room temperature encapsulation of algae oil in water insoluble gluten extract. Food Hydrocolloids for Health. 1, 100022.
Savaghebi, D.; Ghaderi-Ghahfarokhi, M.; Barzegar, M. 2021. Encapsulation of Sargassum boveanum Algae Extract in Nano-liposomes: Application in Functional Mayonnaise Production. Food Bioprocess Technol 14, 1311–1325.
Setha, B.; Febe, F.; Gaspersz, Andi Puspa, S., Idris, Samsul Rahman, Mailoa mn. 2013. Potential of Seaweed Padina Sp. as a source of antioxidant. International Journal of Scientific and Technology research. 2, 6.
Shaghuli, S.; Maryamabadi, A.; Mohebbi, G. H.; Barmak, A.; Armin, S.; Vazirizadeh, A.; Gudarzi, S.; Saleki, M. 2017. Determination of Fatty Acids Profile and Physicochemical Study of Sea Lettuce (Ulva lactuca) Oil from Bushehr City Coasts. ISMJ, 20(2), 143-162
Sinha, A.; Amed Asimi, O. 2007. China rose (Hibiscus rosasinensis) petals: a potent natural carotenoid source for goldfish (Carassius auratus L). Aquaculture Res. 38: 1123-1128.
Tamaskani Zahedi, M., Moslehishad, M., Salami, M., (2016). Fermented camel milk (Chal): chemical, microbial and functional properties. Journal of Pharmaceutical & Health Sciences, 4(3), 193-204.
Vijayaram, S., Ringø, E., Ghafarifarsani, H., Hoseinifar, S. H., Ahani, S., & Chou, C. C. (2024). Use of algae in aquaculture: a review. Fishes, 9(2), 63.
Wijesinghe, W. A. J. P.; Jeon, Y. J. 2012. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers, 88, 13-20.
Wong, K.H.; Cheung, P. 2002. Nutritional evaluation of some subtropical red and green seaweeds Part-1, proximate composition, amino acid profiles and some physico-chemical properties, Journal of Food Chemistry. 71: 475-482.
Yakubu, HG.; Ali, O.; Ilyés, I.; Vigyázó, D.; Bóta, B.; Bazar, G.; Tóth, T.; Szabó, A. 2022. Micro-Encapsulated Microalgae Oil Supplementation Has No Systematic Effect on the Odor of Vanilla Shake-Test of an Electronic Nose . Foods, 11, 3452.
Yingngam, B.; Tantiraksaroj, K.; Taweetao, T.; Rungseevijitprapa, W.; Supaka, N., Brantner, A. H. 2018. Modeling and stability study of the anthocyanin-rich maoberry fruit extract in the fast-dissolving spray-dried microparticles. Powder Technology, 325, 261-270.