The effects of CH1 base on photosynthetic pigments and soluble sugars in relation to antioxidant response and ion regulation in five grapevine cultivars (Vitis vinifera L.) under drought stress
Subject Areas : Stress
Hamed Rahmani
1
,
valiollah rasoli
2
,
Vahid Abdossi
3
,
marzieh ghanbari jahromi
4
1 - Department of Horticulture science and agronomy, science and research branch, Islamic Azad University, Tehran, Iran
2 - Temperate Fruit Research Center, Horticultural Sciences Research Institute, Agricultural Research,
3 -
4 - Department of Horticultural Science and Agronomy, Science and Research branch, Islamic Azad University, Tehran, Iran
Keywords: Grape, Drought, Potassium, Proline,
Abstract :
The aim of this study was to investigate the effect of the CH1 rootstock on photosynthetic pigments, soluble sugars, proline, and potassium content in leaves of five grapevine cultivars (Vitis vinifera L.) under drought stress. The experiment was conducted in a factorial arrangement based on a completely randomized design (CRD) with three replications. The experimental factors included five grapevine cultivars (Flame Seedless, Black Seedless, Turkmenistan 4, Bidaneh Sefid, and Shahani Qazvin) and two irrigation conditions (drought stress and no stress). The results showed that drought stress significantly decreased chlorophyll a and b in all cultivars (p<0.05), while carotenoids (beta-carotenoids) increased in some cultivars under drought stress (p<0.05). Additionally, soluble sugars increased in response to drought stress in all cultivars (p<0.01). Proline also increased in all cultivars in response to drought stress (p<0.05). Potassium content in the leaves of grafted cultivars decreased under drought stress, while a significant increase in sodium content was observed. The grafted cultivars, especially under drought conditions, showed greater changes in pigments, soluble sugars, proline, and potassium content compared to their own-rooted counterparts. These results suggest that the CH1 rootstock can influence the regulation of pigments, soluble sugars, and biochemical responses such as proline and potassium content in the leaves, contributing to improved drought resistance in grapevines.
1) رسولی، و.، محمودزاده، ح. و ع، فخرواعظی. ۱۴۰۲. پایداری تولید انگور با استفاده از نهالهای پیوندی با پایههای مقاوم به سرطان طوقه و خشکی. مجله ترویجی انگور، ۴(2): ۲۰-۲۵.
2) فهیم، س.، قنبری، ع.، ناجی، ا. م.، شکوهیان، ع. ا. و ح، ملکی لجایر. ۱۴۰۱. تأثیر تنش خشکی روی صفات مورفولوژیکی و فیزیولوژیکی در برخی ارقام انگور ایرانی. فرآیند و کارکرد گیاهی، ۱۱(۴۷): ۲۴۹-۲۶۶.
3) فهیم، س.، قنبری، ع.، ناجی، ا. م.، شکوهیان، ع. ا. و ح، ملکی لجایر. ۱۴۰۲. تأثیر کاربرد خاکی زئولیت طبیعی و کود دامی بر شاخصهای فیزیولوژیکی تاک انگور در شرایط تنش خشکی. مجله فیزیولوژی گیاهی ایران، ۱۲(1): ۱-۱۵.
4) مددی، د.، عبادی، ع.، دولتی بانه، ح.، عبدوسی، و. م، حدادی نژاد. ۱۴۰۰. پاسخهای ریختشناسی و فیزیولوژیکی نهال پیوندی انگور بیدانه سفید روی پایه ایرانی و خارجی در شرایط تنش خشکی. مجله علوم باغبانی ایران، ۵۲(۲): ۳۵۳-۳۶۷.
5) Alhverdizadeh, S. and E, Danaee. 2023. Effect of Humic Acid and Vermicompost on Some Vegetative Indices and Proline Content of Catharanthus roseous under Low Water Stress. Environment and Water Engineering, 9(1): 141-152.
6) Danaee, E. and V, Abdossi. 2021. Effect of foliar application of iron, potassium, and zinc nano-chelates on nutritional value and essential oil of Basil (Ocimum basilicum L.) Food and Health, 4(4): 13-20.
7) Dareini, H., Abdossi, V. and E, Danaee. 2014. Effect of some essential oils on postharvest quality and vase life of gerbera cut flowers (Gerbera Jamesonii cv. Sorbet). European Journal of Experimental Biology, 4(3): 276-280.
8) Farooq, M., Basra, S M A. and M. B, Hafeez. 2009. "Improving drought tolerance in rice by exogenous application of plant growth regulators." Acta Physiologiae Plantarum, 31(2): 1–10.
9) Hamada, M. and A, El-enany. 1994. Determination of potassium and sodium contents in plant tissues using flame photometry. Journal of Plant Physiology, 142(3): 362-365.
10) Hossain, M. A., Wani, S. H., Bhattacharjee, S., Burritt, D. J., & Tran, L. S. P. (Eds.). (2016). Drought stress tolerance in plants, Volume 1: Physiology and biochemistry. Springer, Cham.
11) Marschner, H. 2012. Mineral Nutrition of Higher Plants. Elsevier.
12) Serra, I., Strever, A., Myburgh, P A. and Deloire, A. 2013. Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research, 19(1)” 1-14.
13) Shaffer, R., Wicks, G. and M, Smith. 2004. Grapevine rootstocks: Current use, selection, and availability in the United States.
14) Sheligl, M M. 1986. Soluble sugar determination in plant tissues. Journal of Plant Physiology, 121(1): 35-38.
15) Szabados, L. and A, Savouré. 2010. "Proline: A multifunctional amino acid." Trends in Plant Science, 15(2): 89-97.
16) Wang, Q., Li, X., Yang, J., Liu, Y., & He, J. (2017). Carotenoids and their role in plant resistance to oxidative stress. Plant Physiology, 155(1), 1003-1011.