Application of artificial intelligence in prescribing exercise programs for patients
Subject Areas :
Gholamhasan Jafarzadeh
1
,
Mehdi Mashayekhi
2
1 -
2 - Computer Engineering Student of Khatam Alanbiya University of Technology
Keywords: Artificial intelligence, exercise program, patients .,
Abstract :
The present study deals with the application of artificial intelligence in prescribing exercise programs for treating patients. The research used a review and research approach with a library research method, which, by studying and reviewing articles, library and online resources on the Google Scholar site, Ganj system and similar cases, showed the following results: In the application of artificial intelligence to prescribe exercise programs for treating patients, the design of the exercise program must be done carefully and based on the individual needs of the patients. These programs can include specific exercises that are adjusted according to the patient's physical condition, medical history and goals. The use of diverse and comprehensive data, such as medical information, test results and even data related to daily activities, helps artificial intelligence models identify specific patterns and provide accurate suggestions. The safety of the proposed exercise programs is also of great importance. Algorithms must be designed in a way that minimizes the risk of injury and updates the programs based on the patient's health status. This requires accurate and continuous assessments of patient progress and response to exercise. In this regard, there are several challenges. One of these challenges is related to the collection and analysis of valid data. Also, ethical issues such as the privacy of patient information and liability for possible model errors must be considered. These challenges require careful attention and consideration in order to achieve effective and safe results in prescribing exercise programs.
1. رشیدیان نصیراباد نسرین و زینب(1402)، تاثیر هوش مصنوعی در بهبود تمرین درمانی بر روی بیماران ضایعه مغزی،اولین کنفرانس ملی آنالیز داده ها.
2. سفیدی، دنیا، (1402)، بررسی تاثیر تکنولوژی ، هوش مصنوعی در حیطه ورزش، هشتمین همایش ملی پژوهش های نوین در حوزه علوم تربیتی و روانشناسی ایران.
3. شیخیفرد (1402)،فاطمه، کاربردهای هوش مصنوعی در پزشکی، نهمین کنفرانس بین المللی دانش و فناوری مهندسی مکانیک,برق و کامپیوتر ایران
4. روحالامین و رضایی منش(1402)، نقش هوش مصنوعی در ورزش، ششمین کنفرانس بین المللی مدیریت، علوم انسانی و رفتاری در ایران و جهان اسلام.
5. Benjamin Wilson, Judy Hoffman, and Jamie Morgenstern, “Predictive Inequity in Object Detection,” working paper, February 21, 2017, https: //arxiv.org/pdf/1902. 11097. pdf.
6. Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner, “Machine Bias: There’s Software Used across the Country to Predict Future Criminals. And It’s Biased against Blacks,” ProPublica, May 23, 2016, https://www.propublica.org/article/ machine-bias-risk-assessments-in-criminal-sentencing.
7. Michal Kosinski, David Stillwell, and Thore Graepel, “Private Traits and Attributes Are Predictable from Digital Records of Human Behavior,” Proceedings of the National Academy ofSciences of the United States of America, 110/15 (2020): 5802- 805.
8. Supasorn Suwajanakorn, Steven M. Seitz, and Ira Kemelmacher-Shlizerman, “Synthesizing Obama: Learning Lip Sync from Audio,” working paper, July 2017, https: //grail. cs. washington. edu/projects/AudioToObama/siggraph17_obama. pdf.
9. Jenna Burrell, “How the Machine ‘Thinks’: Understanding Opacity in Machine Learning Algorithms,” Big Data & Society, 3/1 (June 2016): 1-12.
10. H. A. Haenssle, C. Fink, R. Schneiderbauer, F. Toberer, T. Buhl, A. Blum, A. Kalloo, A. Ben Hadj Hassen, L. Thomas, A. Enk, and L. Uhlmann, “Man against Machine: Diagnostic Performance of a Deep Learning Convolutional Neural Network for Dermoscopic Melanoma Recognition in Comparison to 58 Dermatologists,” Annals of Oncology, 29/8 (August 2018): 1836-1842.
11. John Markoff, “Armies of Expensive Lawyers, Replaced by Cheaper Software,” The NewYorkTimes,March4,2011,https://www.nytimes.com/2011/03/05/science/05legal.html.
12. Andreas M. Kaplan and Michael Haenlein, “The Fairyland ofSecond Life: About Virtual Social Worlds and How to Use Them,” Business Horizons, 52/6 (November/December 2022): 563-572.
13. “China Invents the Digital Totalitarian State,” The Economist, December 17, 2016, https://www. economist.com/briefing/2016/12/17/china-invents-the-digitaltotalitarian-state.
14. “San Francisco Bans Facial Recognition Technology,” The New York Times, May 14, 2019,https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-sanfrancisco.html.
15. Rizzo, A. S., & Koenig, S. T. (2017). Virtual reality and cognitive
rehabilitation. Handbook of Virtual Environments: Design,Implementation, and Applications.
16. Barton, C. J., & Morrissey, D. (2017). The use of artificial intelligence in
sport science and rehabilitation. Journal of Sports Sciences, 35(5), 400-
409.
17. Le, T. K., & Lee, T. K. (2022). Artificial intelligence applications in sports medicine. Sports Health, 14(4), 346-355.
18. Jain, S. H., & Powers, B. W. (2020). AI and clinical decision support:
The intersection of health and technology. Journal of Clinical
Informatics, 6(2), 45-50.