Fuzzy Logic-Based Controller Design for Enhancing Anti-lock Braking System Performance
Subject Areas : Control Engineering
1 -
Keywords: Anti-lock braking system (ABS), fuzzy controller, Hydraulic Control Unit, Electronic Control Unit,
Abstract :
This paper presents the design of a fuzzy controller for vehicles’ Anti-lock Braking System (ABS), aiming to prevent wheel lockup during braking and enhance vehicle control under critical conditions. Wheel lockup can lead to an increased stopping distance and a loss of vehicle control, particularly on slippery road surfaces. The ABS accurately controls the hydraulic pressure within the braking system to maintain the longitudinal slip between the tire and the road surface within an allowable range. In this study, an optimal fuzzy controller is designed to achieve desirable performance in the ABS. The proposed controller can effectively prevent wheel lockup by adjusting the braking force on the front and rear wheels while improving braking performance under various road conditions. This research focuses on utilizing a fuzzy control system to enable rapid adaptation to different road conditions and mitigate the negative effects caused by wheel slips. Simulation results demonstrate that the proposed system can deliver superior performance compared to conventional braking systems. By improving the design of the ABS, this study contributes significantly to enhancing vehicle safety and reducing road accidents.
[1] مرکز تحقیقات ایران خودرو. (1390). معرفی سیستم ترمز ضدقفل خودروی سمند (واحد دینامیک خودرو، گروه ترمز).
[2] ایساکو. (1395). ترمز ضدقفل ABS. شرکت تهیه و توزیع قطعات و لوازم یدکی ایران خودرو.
[3] وانگ، لی(1378). سیستمهای فازی و کنترل فازی (ترجمه دکتر محمد تشنه لب). دانشگاه صنعتی خواجه نصیرالدین طوسی.
[4] Sachenbacher, M., & Struss, P. (1997). Fault isolation in the hydraulic circuit of an ABS. International Journal of Automation Technology, 105-111.
[5] Yu, F., Feng, J. Z., & Li, J. (2002). A fuzzy logic controller design for vehicle ABS with an online optimized target slip ratio. International Journal of Automation Technology, 165-170.
[6] Lee, Y., & Zak, S. H. (2002). Designing a genetic neural fuzzy antilock brake system controller. IEEE Transactions on Evolutionary Computation, 6(2).
[7] Will, A. B., & Zak, S. H. (2000). Antilock brake system modeling and fuzzy control. International Journal of Vehicle Design, 24(1), 1. https://doi.org/10.1504/IJVD.2000.001870.
[8] Yu, D. (2005). Antilock brake control system of electric vehicles. Control Theory & Applications. Available at: https://en.cnki.com.cn/Article_en/CJFDTOTALKZLY200501027.htm.
[9] Yu, Y. (2004). Study on fuzzy PID control algorithm for antilock brake system. Journal of Highway and Transportation Research and Development. Available at: http://en.cnki.com.cn/Article_en/CJFDTOTALGLJK200407032.htm.
[10] Sanchez-Torres, J. D., Loukianov, A. G., Galicia, M. I., & Rivera, J. (2011). A sliding mode regulator for antilock brake system. IFAC Proceedings Volumes, 44(1), 7187–7192. https://doi.org/10.3182/20110828-6-IT-1002.03644.
[11] Lin, W.-C., Dobner, D. J., & Fruechte, R. D. (2014). Design and analysis of an antilock brake control system with electric brake actuator. International Journal of Vehicle Design. Available at: https://trid.trb.org/view/383088.
[12] Liqun, Z., & Qingsong, L. (2018). Development prospects of ABS braking under the trend of high-end motorcycle manufacturing. Motorcycle Technology, 316(6), 40-46.
[13] Tao, L. (2020). Design and research of automotive electronic mechanical braking system. Internal Combustion Engine and Accessories, 323(23), 32-33.
[14] Jiantao, S., Lang, L., & Yang, C. (2020). The effect of automobile anti-lock braking system on braking distance. Auto Parts, 150(12), 73-75.
[15] Shengli, Z. (2019). Design and analysis of automobile electromechanical brake actuator. Mechanical Research and Application, 32(5), 66-69.
[16] Zhang, L., Wang, Y., & Chen, M. (2022). Robust wheel slip control in anti-lock braking systems using model predictive control. Control Engineering Practice, 235, Article 104897. https://doi.org/10.1016/j.conengprac.2021.104897.
[17] Lee, H., Park, J., & Kim, K. (2023). Fuzzy logic-based control strategy for anti-lock braking systems in autonomous vehicles. IEEE Access, 326, Article 3056789. https://doi.org/10.1109/ACCESS.2023.3056789.
[18] Ahmadi, M., Khajepour, A., Chen, S., & Litkouhi, B. (2020). Nonlinear control and estimation of longitudinal tire slip for anti-lock braking systems. IEEE/ASME Transactions on Mechatronics, 211, Article 2955432. https://doi.org/10.1109/TMECH.2019.2955432.
[19] Wu, D., Liu, Y., & Huang, T. (2024). Adaptive neural network control for anti-lock braking systems with uncertain road conditions. Neural Computing and Applications. https://doi.org/10.1007/s00521-023-07654-2.