Guidance and control of flying vehicle by explicit model predictive controller
Subject Areas : Mechanical Engineeringmohammad mahdi soori 1 , Hosein Sadati 2
1 -
2 -
Keywords: flying vehicle, target, integrated guidance and control, model predictive control, optimization,
Abstract :
The integrated guidance and control (IGC) system offers a significant advantage by leveraging the synergy between guidance and control subsystems to enhance the overall performance of flying vehicles. In the context of air defense missile systems, where speed is critical for intercepting fast-moving targets, this paper introduces a novel approach for designing and implementing an explicit linear model predictive controller (MPC) specifically tailored for three-dimensional scenarios. The proposed controller is developed to minimize the time to collision and miss distance by fully exploiting the interactions within the IGC framework, significantly enhancing the response time and speed, making it suitable for high-speed air defense applications. A key innovation of this work lies in the adoption of the explicit MPC approach, where the optimization problem is solved offline for all potential state vector values. The optimal control commands are formulated as explicit functions of the state variables and stored in memory. During real-time operation, the controller rapidly evaluates these precomputed functions to generate control commands, eliminating the need for computationally expensive online optimizations. This design significantly reduces the computational load, making it particularly suitable for hardware with limited processing capacity. Simulation results validate the superior performance of the proposed explicit MPC compared to conventional PID and LQR controllers. Specifically, the IGC system employing the proposed controller demonstrated a marked reduction in both miss distance and time to collision. These findings underscore the effectiveness and practicality of the explicit MPC in improving the precision, speed, and efficiency of guidance and control for advanced flying vehicles, particularly in air defense missile systems.
[1[ P. Zarchan, Tactical and strategic missile guidance. American Institute of Aeronautics and Astronautics, Inc. , 2012.
]2[ Neil F. Palumbo, Ross A. Blauwkamp, and Justin M. Lloyd. Basic principlesof homing guidance. Johns Hopkins APL Technical Digest (Applied PhysicsLaboratory), 2010.
]3[ Nathan Harl and S. N. Balakrishnan. Reentry terminal guidance through slidingmodecontrol. Journal of guidance, control, and dynamics, 33(1): 186—199, 2010. doi. org/10. 2514/1. 42654.
]4[ Wang, X. H. , Tan, C. P. , & Cheng, L. P. (2020). Impact time and angle constrained integrated guidance and control with application to salvo attack. Asian Journal of Control, 22(3), 1211-1220.
]5[ He, S. , Song, T. , & Lin, D. (2017). Impact angle constrained integrated guidance and controlfor maneuvering targetinterception. Journal of Guidance, Control, and Dynamics, 40(10), 2653-2661.
]6[ Ma, J. , Guo, H. , Li, P. , & Geng, L. (2013). Adaptive integrated guidance and control design for a missile with input constraints. IFAC Proceedings Volumes, 46(20), 206-211.
]7[ Michael A. Cross. Missile interceptor integrated guidance andcontrol: single loop higher order sliding mode approach, PhD thesis , The University of Alabama in Huntsville, 2020.
]8[ Jiayi Tian, Neng Xiong, Shifeng Zhang, Huabo Yang, Zhenyu Jiang,Integrated guidance and control for missile with narrow field-of-view strapdown seeker, ISA Transactions, vol. 106,2020, Pages 124-137. https: //doi. org/10. 1016/j. isatra. 2020. 06. 012.
]9[ Sinha, Abhinav & Kumar, Shashi & Mukherjee, Dwaipayan, Integrated Guidance and Control For Dual Control Interceptors Under Impact Time Constraint, AIAA scitech Forum Conference, January 2021. doi. org/10. 2514/6. 2021-1463.
]10[ Li Z. , Dong Q. , Zhang X. , Zhang H. , Zhang F. Field-to-View Constrained Integrated Guidance and Control for Hypersonic Homing Missiles Intercepting Supersonic Maneuvering Targets, Aerospace. 2022; 9(11): 640. https: //doi. org/10. 3390/aerospace9110640.
]11[ Xiaohui Liang, Bin Xu, Kunhao Xinglan LiuAdaptive NN control of integrated guidance and control systems based on disturbance observer, Journal of the Franklin Institute, Volume 360, Issue 1, 2023.
]12[ Xiangyu Tang, Jianglong Yu, Xiwang Dong, Zhang Ren,Integrated guidance and control with impact angle and general field-of-view constraints, Aerospace Science and Technology, Volume 144,2024. DOI: 1 10. 1016/j. ast. 2023. 108809.
]13[ S. Ma, A. Li و Z. Wang, “Integrated Guidance and Control for Homing Missiles with Terminal Angular Constraint in Three Dimension Space", IEEE International Conference on Artificial Intelligence and Information Systems, Dalian, China, 2020. DOI: 10.1109/ICAIIS49377.2020.9194808.
]14[ Modern control Engineering 5th Edition, by Katsuhiko Ogata,2009.
[15] A. Bemporad, "Recent advances in embedded model predictive control," Michigan Engineering, 14 July 2016. [Online]. Available: https://www.youtube.com/watch?v=ugeCx1sytNU. [Accessed 1 June 2019].
[16] A. Bemporad, M. Morari, V. Dua and E. Pistikopoulos, "The explicit linear quadratic regulator for constrained systems," Automatica, vol. 38, no. 1, p. 3–20, 2002.
[17] R. Rajamani, "Vehicle dynamics and control," in Mechanical Engineering Series, Springer, 2012, pp. 87-109 & 241-162.
[18] J. H. Lee, "Model predictive control: review of the three decades of development," International Journal of Control, Automation and Systems, vol. 9, p. 415–424, 2011.
Journal of Applied Dynamic Systems and Control,Vol.8, No.1, 2025: 25-43
| 25 |
Guidance and Control of Flying Vehicle by Explicit Model Predictive Controller
Mohammad Mahdi Soori1, Hosein Sadati2*
1 Department of Mechanical Engineering K. N. Toosi University of Technology Iran. Email: hosein728061@gmail.com
2* Corresponding Author : Department of Mechanical Engineering K. N. Toosi University of Technology, Iran. Email: mmsoorimech@yahoo.com
Received: 2025.01.03; Accepted: 2025.01.27
Abstract–The integrated guidance and control (IGC) system offers a significant advantage by leveraging the synergy between guidance and control subsystems to enhance the overall performance of flying vehicles. In the context of air defense missile systems, where speed is critical for intercepting fast-moving targets, this paper introduces a novel approach for designing and implementing an explicit linear model predictive controller (MPC) specifically tailored for three-dimensional scenarios. The proposed controller is developed to minimize the time to collision and miss distance by fully exploiting the interactions within the IGC framework, significantly enhancing the response time and speed, making it suitable for high-speed air defense applications. A key innovation of this work lies in the adoption of the explicit MPC approach, where the optimization problem is solved offline for all potential state vector values. The optimal control commands are formulated as explicit functions of the state variables and stored in memory. During real-time operation, the controller rapidly evaluates these precomputed functions to generate control commands, eliminating the need for computationally expensive online optimizations. This design significantly reduces the computational load, making it particularly suitable for hardware with limited processing capacity. Simulation results validate the superior performance of the proposed explicit MPC compared to conventional PID and LQR controllers. Specifically, the IGC system employing the proposed controller demonstrated a marked reduction in both miss distance and time to collision. These findings underscore the effectiveness and practicality of the explicit MPC in improving the precision, speed, and efficiency of guidance and control for advanced flying vehicles, particularly in air defense missile systems.
Keywords: Flying vehicle, target, integrated guidance and control, model predictive control, optimization
1. Introduction
Guidance, navigation and control functions are critical to all forms of air and space vehicles, including missiles. In practice, these functions work together in series to maneuver a vehicle. It is now common to develop guidance completely separate from control (autopilot) and vice versa. Almost all textbooks and technical articles on this topic have dealt with it [1].
Some more advanced guidance algorithms not only achieve interception, but also control the interception angle of the missile upon impact. However, all these algorithms are rooted in the collision triangle concept, which minimizes the change of line of sight between the interceptor and the target, and may suffer from instability at the end of the task. In a multi-loop structure, steering is generated using engagement
kinematics while the autopilot stabilizes the body dynamics and follows the acceleration provided by the steering.
1.1 Integrated guidance and control
Unlike the conventional three-loop autopilot structure, Integrated Guidance and Control (IGC) is an integrated framework in which guidance and control are considered to be integrated within rather than independent of each other.
The advantage of IGC is their ability to use interactions between command and control subsystems. IGC intends to increase the performance of the missile by taking advantage of the synergy between the guidance and control processes. Depending on the structure of the IGC, some provide additional feedback paths in the flight control system, while others require less. Putting G&C into a single IGC system improves its optimization potential. Because optimization of parameters can be done directly. Cost functions include key performance parameters such as missile and target relative speed of approach, line-of-sight angle, impact angle, and many parameters not readily available to autopilot are now directly available. In the conventional approach, the guidance law has no knowledge of the amount of spin or acceleration applied to the missile, instead, guidance only knows the relative position and speed of engagement. As the range-target decreases, small changes in geometry result in large acceleration commands that can exceed the performance range of the autopilot. In addition, the autopilot cannot adjust itself based on relative engagement kinematics, as it does not receive this information. As a result, conventional G&C systems rely on making the autopilot time constant as small as possible to improve stability. The autopilot time constant designs the distance from miss to target in conventional G&C systems[2].
One of the main approaches to IGC using SMC was presented in 2010 by Harrell and Balakrishnan using terminal second-order sliding mode control [3]. by Harrell and Balakrishnan using terminal second-order sliding mode (TSM) control. In 2019, Wang et al proposed an integrated guidance and control method with limited impact angle for the missile to achieve unidirectional attack capability[4]. To improve the ability to damage the target, He et al.[5] designed an integrated guidance and control law with impact angle constraint to deal with the problem of tracking unknown maneuvering targets. To deal with the limitations of stimulus saturation in real systems, Ma et al in [6] investigated an integrated control law using dynamic level control, feedforward control and adaptive neural network. And Michel and Stechel thoroughly investigated the sliding mode control for the integrated plane model[7]. In 2020, Tian et al. presented a unified model to avoid practical problems such as the field of view limitation, and solved the field limitation by converting output to input saturation[8]. In 2021, Sinha et al presented an integrated guidance and control model with limited time. In this research, due to the simplicity of the design, sliding mode control is used, while a non-linear finite time disturbance observer is used to estimate the target maneuver [9]. In 2022, Lee proposed a unified model for hypersonic homing missiles. In this design, high-speed targets are hit with proper accuracy by using the sliding model controller, and by using the Monte Carlo method, the non-hit distance was reduced to the minimum[10]. In 2023 Xiaohui Liang et al investigated the nonlinear integrated missile guidance and control system with external uncertainties and disturbances and proposed a new adaptive neural network (NN) control scheme with the help of estimates obtained by NN and disturbance observer (DOB). In this paper, the weight learning rule NN and DOB are updated according to the tracking and estimation errors. Under the operation of the proposed adaptive NN rules, a good tracking characteristic and guidance effects can be obtained for the integrated missile guidance and control (IGC) system. Finally, the simulation results of two different scenarios show the correctness of the designs. It is worth mentioning that the missile tracking process shows a smoother trajectory and a shorter distance can be achieved with the proposed NN adaptive control approach[11]. Xiangyu et al. 2024 investigates the integrated guidance and control (IGC) law design problem with impact angle and general field of view (FOV) constraints. First, the IGC model for non-maneuvering moving target tracking is parameterized by state-dependent coefficient matrices. The nominal IGC law for target interception with the desired impact angle is obtained by solving the state-dependent Riccati equation. Second, since the relative degrees of general FOV constraints exceed one according to the IGC model, high-order control barrier functions are constructed. Satisfying the FOV constraints is equivalent to ensuring that the hypersurface sets defined by the barrier functions are constant, which translate into dependent constraints on the control input. The nominal IGC law is modified in a minimally invasive way by quadratic programming. Then, the proposed method is extended to the case of maneuvering target tracking using a relative coordinate framework. Finally, numerical simulations are performed to confirm the effectiveness of the proposed method. [12]
In this article, the development of an explicit linear model predictive controller (MPC) for an integrated guidance and control (IGC) model is introduced and explored in depth. The proposed approach leverages the explicit formulation of the controller to enhance real-time performance in control systems. Unlike traditional MPCs, where optimization is performed online at every time step, the explicit controller precomputes the solution to the optimization problem offline for all feasible values of the state vector. This process involves determining the optimal control input as an explicit function of the state variables, which is subsequently stored in the controller's memory. During real-time operation, the controller simply evaluates this precomputed function at each time step, using the current values of the state vector to generate the control commands. This method significantly reduces the computational burden during runtime, as the need for solving optimization problems repeatedly in real time is eliminated. Consequently, this approach is particularly advantageous for applications where computational resources are limited, such as hardware with constrained processing capabilities or systems requiring high-speed control actions. The benefits of this explicit MPC design were validated through simulations, which demonstrated its superior performance compared to traditional controllers like proportional-integral-derivative (PID) and linear quadratic regulator (LQR) controllers. Specifically, the results highlighted that the proposed controller, when implemented alongside the integrated guidance and control model for air defense missile systems, achieved a notable reduction in both the miss distance and the time to collision. These improvements underscore the effectiveness of the proposed method in achieving more precise, efficient, and high-speed control outcomes, making it a promising solution for advanced missile defense systems, particularly in time-critical and resource-constrained environments. The results from these simulations demonstrate that the proposed approach yields the best performance in terms of speed and accuracy for air defense missile systems.
2. Mathematical modeling
A missile-target engagement scenario involves a missile trying to intercept a target by changing course. All through homing guidance, sensors onboard the missile are used to guide the missile to impact. The initial conditions of this scenario include three main assumptions. (a) Midcourse guidance is successful, (b) The speed of the missile and the target are close to each other in the collision course, (c) In order to intercept and completely destroy the target, the impact angle of the missile and the target is limited. The engagement geometry of this conflict scenario is shown in Fig. 1.
Fig. 1 -Kinematics of conflict
The general purpose of this article will be to design a proper controller for accurate target tracking. Therefore, the problem of missile-target engagement is discussed, which includes all the topics required for accurate modeling, including engagement kinematics, missile dynamics, and integrated guidance and control model. The o-xyz in Fig. 1 represents the inertial coordinate system. The coordinate system in which the missile and target velocities are described is shown in Fig. 1 as () , and
is the relative missile/target range. In respective orders, vectors
are the velocities of the missile and target, (
) and (
) are the angles of the missile and the target relative to the velocity coordinates and line of sight coordinate system, (
) is the elevation angle and the side angle[13]. The kinematics of the engagement is described by the equations