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Abstract–The integrated guidance and control (IGC) system offers a significant advantage by 

leveraging the synergy between guidance and control subsystems to enhance the overall 

performance of flying vehicles. In the context of air defense missile systems, where speed is 

critical for intercepting fast-moving targets, this paper introduces a novel approach for designing 

and implementing an explicit linear model predictive controller (MPC) specifically tailored for 

three-dimensional scenarios. The proposed controller is developed to minimize the time to 

collision and miss distance by fully exploiting the interactions within the IGC framework, 

significantly enhancing the response time and speed, making it suitable for high-speed air defense 

applications. A key innovation of this work lies in the adoption of the explicit MPC approach, 

where the optimization problem is solved offline for all potential state vector values. The optimal 

control commands are formulated as explicit functions of the state variables and stored in memory. 

During real-time operation, the controller rapidly evaluates these precomputed functions to 

generate control commands, eliminating the need for computationally expensive online 

optimizations. This design significantly reduces the computational load, making it particularly 

suitable for hardware with limited processing capacity. Simulation results validate the superior 

performance of the proposed explicit MPC compared to conventional PID and LQR controllers. 

Specifically, the IGC system employing the proposed controller demonstrated a marked reduction 

in both miss distance and time to collision. These findings underscore the effectiveness and 

practicality of the explicit MPC in improving the precision, speed, and efficiency of guidance and 

control for advanced flying vehicles, particularly in air defense missile systems. 
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1. Introduction 
 

Guidance, navigation and control functions are critical to all 

forms of air and space vehicles, including missiles. In 

practice, these functions work together in series to 

maneuver a vehicle. It is now common to develop guidance 

completely separate from control (autopilot) and vice versa. 

Almost all textbooks and technical articles on this topic 

have dealt with it [1]. 

Some more advanced guidance algorithms not only achieve 

interception, but also control the interception angle of the 

missile upon impact. However, all these algorithms are 

rooted in the collision triangle concept, which minimizes 

the change of line of sight between the interceptor and the 

target, and may suffer from instability at the end of the task. 

In a multi-loop structure, steering is generated using 

engagement   

kinematics while the autopilot stabilizes the body dynamics 

and follows the acceleration provided by the steering. 

 

 

1.1 Integrated guidance and control 

Unlike the conventional three-loop autopilot structure, 

Integrated Guidance and Control (IGC) is an integrated 

framework in which guidance and control are considered to 

be integrated within rather than independent of each other. 

The advantage of IGC is their ability to use interactions 

between command and control subsystems. IGC intends to 

increase the performance of the missile by taking advantage 

of the synergy between the guidance and control processes. 

Depending on the structure of the IGC, some provide 

additional feedback paths in the flight control system, while 

others require less. Putting G&C into a single IGC system 

improves its optimization potential. Because optimization 

of parameters can be done directly. Cost functions include 
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key performance parameters such as missile and target 

relative speed of approach, line-of-sight angle, impact 

angle, and many parameters not readily available to 

autopilot are now directly available. In the conventional 

approach, the guidance law has no knowledge of the 

amount of spin or acceleration applied to the missile, 

instead, guidance only knows the relative position and 

speed of engagement. As the range-target decreases, small 

changes in geometry result in large acceleration commands 

that can exceed the performance range of the autopilot. In 

addition, the autopilot cannot adjust itself based on relative 

engagement kinematics, as it does not receive this 

information. As a result, conventional G&C systems rely on 

making the autopilot time constant as small as possible to 

improve stability. The autopilot time constant designs the 

distance from miss to target in conventional G&C 

systems[2]. 

One of the main approaches to IGC using SMC was 

presented in 2010 by Harrell and Balakrishnan using 

terminal second-order sliding mode control [3]. by Harrell 

and Balakrishnan using terminal second-order sliding mode 

(TSM) control.  In 2019, Wang et al proposed an integrated 

guidance and control method with limited impact angle for 

the missile to achieve unidirectional attack capability[4]. To 

improve the ability to damage the target, He et al.[5] 

designed an integrated guidance and control law with 

impact angle constraint to deal with the problem of tracking 

unknown maneuvering targets. To deal with the limitations 

of stimulus saturation in real systems, Ma et al in [6]  

investigated an integrated control law using dynamic level 

control, feedforward control and adaptive neural network. 

And Michel and Stechel thoroughly investigated the sliding 

mode control for the integrated plane model[7]. In 2020, 

Tian et al. presented a unified model to avoid practical 

problems such as the field of view limitation, and solved 

the field limitation by converting output to input 

saturation[8]. In 2021, Sinha et al presented an integrated 

guidance and control model with limited time. In this 

research, due to the simplicity of the design, sliding mode 

control is used, while a non-linear finite time disturbance 

observer is used to estimate the target maneuver [9]. In 

2022, Lee proposed a unified model for hypersonic homing 

missiles. In this design, high-speed targets are hit with 

proper accuracy by using the sliding model controller, and 

by using the Monte Carlo method, the non-hit distance was 

reduced to the minimum[10]. In 2023 Xiaohui Liang et al 

investigated the nonlinear integrated missile guidance and 

control system with external uncertainties and disturbances 

and proposed a new adaptive neural network (NN) control 

scheme with the help of estimates obtained by NN and 

disturbance observer (DOB). In this paper, the weight 

learning rule NN and DOB are updated according to the 

tracking and estimation errors. Under the operation of the 

proposed adaptive NN rules, a good tracking characteristic 

and guidance effects can be obtained for the integrated 

missile guidance and control (IGC) system. Finally, the 

simulation results of two different scenarios show the 

correctness of the designs. It is worth mentioning that the 

missile tracking process shows a smoother trajectory and a 

shorter distance can be achieved with the proposed NN 

adaptive control approach[11]. Xiangyu et al. 2024 

investigates the integrated guidance and control (IGC) law 

design problem with impact angle and general field of view 

(FOV) constraints. First, the IGC model for non-

maneuvering moving target tracking is parameterized by 

state-dependent coefficient matrices. The nominal IGC law 

for target interception with the desired impact angle is 

obtained by solving the state-dependent Riccati equation. 

Second, since the relative degrees of general FOV 

constraints exceed one according to the IGC model, high-

order control barrier functions are constructed. Satisfying 

the FOV constraints is equivalent to ensuring that the 

hypersurface sets defined by the barrier functions are 

constant, which translate into dependent constraints on the 

control input. The nominal IGC law is modified in a 

minimally invasive way by quadratic programming. Then, 

the proposed method is extended to the case of 

maneuvering target tracking using a relative coordinate 

framework. Finally, numerical simulations are performed to 

confirm the effectiveness of the proposed method. [12] 

In this article, the development of an explicit linear model 

predictive controller (MPC) for an integrated guidance and 

control (IGC) model is introduced and explored in depth. 

The proposed approach leverages the explicit formulation 

of the controller to enhance real-time performance in 

control systems. Unlike traditional MPCs, where 

optimization is performed online at every time step, the 

explicit controller precomputes the solution to the 

optimization problem offline for all feasible values of the 

state vector. This process involves determining the optimal 

control input as an explicit function of the state variables, 

which is subsequently stored in the controller's memory. 

During real-time operation, the controller simply evaluates 

this precomputed function at each time step, using the 

current values of the state vector to generate the control 

commands. This method significantly reduces the 

computational burden during runtime, as the need for 

solving optimization problems repeatedly in real time is 

eliminated. Consequently, this approach is particularly 

advantageous for applications where computational 



 

 

resources are limited, such as hardware with constrained 

processing capabilities or systems requiring high

control actions. The benefits of this explicit MPC design 

were validated through simulations, which demonstrated

superior performance compared to traditional controllers 

like proportional

quadratic regulator (LQR) controllers. Specifically, the 

results highlighted that the proposed controller, when 

implemented alongside the i

model for air defense missile systems, achieved a notable 

reduction in both the miss distance and the time to collision. 

These improvements underscore the effectiveness of the 

proposed method in achieving more precise, effici

high

solution for advanced missile defense systems, particularly 

in time

results from these simulations demonstrate that the 

proposed approach yields

speed and accuracy for air defense missile systems.

 

2. Mathematical modeling

A missile

trying to intercept a target by changing course. All through 

homing guidance, sensors onboard the missile are used to 

guide the missile to impact. The initial conditions of this 

scenario include three

guidance is successful, (b) The speed of the missile and the 

target are close to each other in the collision course, (c) In 

order to intercept and completely destroy the target, the 

impact angle of the missile and the targe

engagement geometry of this conflict scenario is shown in 

Fig. 1. 
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(8) θ� -
 �ϕ� -� sin θ- cos θ- � 2R� θ-�R� M%Y cosUγWX� sin θ- sinUϕ- � φWXmR UY cosUγWX � Z sinUγWXX� M%Umg cos θ � Z sinUγWXX � dA- 

 

(9) ϕ-� 
 �2R� ϕ-�R � 2θ-� ϕ-� tan θ- �M�Y cosUγWX� cosUϕ- � φWXmRcosθ- UY cosUγWX� Z sinUγWXX� M�Umg cos θ � Z sinUγWXX� dB- 

 

 

In equations 8 and 9, parameters M1and M2 are defined as 

relations 10 and 11. 

(10) M% 
 cos θ cos θ- � sin θ sin θ- cosUϕ- � φWXmR  

(11) M� 
 sin θ cosUϕ- �φWXmR cos θ-  

 

In equations 8 to 11, φW is the ballistic angle, γW the 

rotation angle, (dA-dB-) are the approximate error for the θ-and ϕ-. Kinematic equations of flight path angle and 

ballistic angle are shown as equations 12 and 13, as 

follows.  

(12) θ� 
 YcosγW � ZsinγW �mgcosθmV'  

(13) φW� 
 �YsinγW � ZcosγWmV'cosθ  

 

 

The kinematic and dynamic equations of the missile 

rotating around the center of mass in three-dimensional 

space are given as equations 14 through 16 as follows. 

(14)  � 
 �\] ^�1 6 ���  � \� ^�1 6 �01  � \�� 	�_����� � ` ��� � ��� ab_����� 	
(15) 6� 
 \] �01  � \� ���  � � ��`���� �01 ab�_� 	

(16) ab�
 ���  �c� 6\] � �01  �c� 6\�� 	U^�1� �01 ab � ^�1 6X � �^�1� ��� ab�_�� ���� ��� ab ^�1 6_� `	

 

In equations 14 to 16, parameters \] , \� , and \�  are the 

angular velocities in the roll, yaw, and pitch channels, 

respectively.  

The dynamic equations of the state of the missile are 

obtained as equation 17.  

(17) 

dee
ef
eee
g\]� 
 h� � h�h] \�\� �i]h]
\�� 
 h� � h]h� \]\� �i�h�
\�� 
 h] � h�h� \�\] �i�h�

j 

 

In equation 17, �h]	, h�	, h�:denote the moments of inertia 

for the roll, yaw, and pitch channels, respectively. Also, the 

three moments  (i],, i�, i�) are defined as in equation 

18. 

(18) 

def
egi] 
 ��k!�]� ��]56 ��]7l9]Ci� 
 ��k !��56 ���7;9�Ci� 
 ��k���� ���789�:

j 
 

 

In equation 18, k is the reference length, (�]�,�]5�]7l) are 

the moment coefficient of the partial derivatives related to 

the roll channel, (��5 , ��7;) are those related to the yaw 

channel, and (��� 	, ��78 ) are those related to the pitch 

channel. 

By combining relations 8, 9, and 14 with 18, the three-

dimensional equation of integrated missile guidance and 

control can be written as equation 19 [13].In these 

equations, x the state variables of the system are 
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(19) m n�o 
 n%n�% 
 p% � q%n�rrr � s1n�� 
 p� � q�nu � s�n�u 
 pu � quv � su
j	

 

 

 

 

, where 

n0 
 w�� � ��x�� � ��xy ،	n1 
 z������{  ،n�rrr 
 | 6} , n2 
 ~ 6a�� ، 

n3 
 ~\]\�\�� ،	v 
 �9]9�9��,   

and s�U0 
 1,	2,	3X shows the approximate system error. 

Moreover, the matrices q�  and p�are shown in relations 

(20) to (25). 

(20) 
q%


���
���i%����� �����5 �01 �� �01U�� � �bX���i������ ����5 ���U�� � �bX�� ��� �� ���

��
 

(21) q� 
 ~� ^�1 6 ���  ^�1 6 �01  1�01  ���  0���  �c� 6 ��01  �c� 6 0� 
 

(22) 

 

 

 

 

qu 

��
���
��
���k�]7lh] 0 0

0 ��k��7;h� 0
0 0 ��k��78h� ��

���
��
�
 

 

(23) 
p%

 ��
��� 2��� ��� � �� �� �01 �� ��� �� �i%�`����
�2��� ��� � 2������ ^�1 �� �i��`���� ��

�� 
 

(24) p� 

��
��
��� ��	��_ ��� 6 � `_ ��� 6 ��� a������_ � _̀ ��� � �01 a�����_ � _̀ ��� � ��� a ^�1 6��

��
��
 

 

(25) 

pu 

���
���
��h� � h�h] \�\� � ��k !�]� ��]56Ch]h� � h]h� \]\� � ��k�]56h�h] � h�h� \�\] � ��k��� h� ���

���
��
 

 

3 - Controller design 
The missile hits the target when R (the distance between the 

missile and the target) approaches ���.  (the minimum 

distance between the missile and the target). The goal of the 

controller design in this article is to the make the angles �� 

and �� converge to their reference values ��x and ��x, 

respectively, and also make the distance between the 

missile and approach ���.. 
Backtracking method is used to solve the problem. And the 

control input (u) will be calculated by the Higher order 

continuous sliding mode control. The backsteping approach 

states that a virtual control signal named n�� is designed at 

first. This signal is the desired behavior of the state variable n� and its design is such that the state variable no tends to 

zero. So, in fact, the desired behavior of n� is obtained in 

such a way that the first goal of the control problem is 

established. In the next step, we design the virtual control 

signal nu� . This signal is the reference signal of state 

variable nu and it is designed in such a way that if nu 

follows it, n� also follows n��  and as a result no will 

tend to zero. In the last stage, the real control input u is 

designed in such a way that it converges nu to nu�, and as 

a result, the control loop is completed. By doing this, the 

second goal of the control problem (zeroing the distance 

between the missile and the target (R) will be established. 

Two S virtual control signals are obtained by the 

backtracking method, but the real control signal, which is 

the main goal of this article, will be calculated from the 

explicit linear model predictive controller. To calculate 

virtual signals, we will have relations (26) and (27). 

(26) �% 
 no � �n% 

n�� 
 �U�q%X�%Un% � �p% � �% tanhU�%XX 
(27) �� 
 n� � n�� 

nu� 
 �Uq�X�%Up� � �� tanhU��XX 
 

In equations (26) and (27), the coefficients c,�% , and �� 

are fixed and will be obtained with the help of optimization 

methods of PSO along with the variables related to the real 

controller.  
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3-1 PID controller design 

PID controller is introduced as a standard control structure 

in classical control theory. The performance of the system is 

improved by accurately adjusting the values of the three 

proportional gains ��, integral gain ��, and derivative gain ��. By adjusting these parameters, the steady state error and 

output fluctuations can be controlled in response to the step 

input. In order to evaluate the proposed controller of this 

article, first a simple PID controller is designed. According 

to the system equations, the output of the missile system is 

its angular velocities. These speeds are to tend to zero. As a 

result, tracking error is defined as equation 28. 

The general form of the PID controller is of the form given 

in Eq. (29) as:  

(29) 
v 
 ��c � ���cs^ � �� �scs^� 

 

ZieglerNichols method is used to obtain the  ��, �� , and ��  gains in relation (29). For this purpose, the system 

should be linearized first. By a frequency analysis then, the 

PID controller gains are obtained from Eq. (30) [14]. 

(30) 

�� 
 0. 6	��� �� 
 0. 125	��� �� 
 0. 5	��� 

 

The values of ��� and ��� are calculated from Eq. (31). 

(31) 
��� 
 ����� 
 2 ¡�¢ 

In relation (31), the parameter �� is the phase margin and ¡�¢ is the frequency where the phase margin is measured 

and the system phase will be -180.  

3-2 LQR controller design 

 
The 2nd-order linear regulator or LQR controller attempts 

to minimize the objective function (32). 

(32) h 
 � 12 £n¤¥U^XnU^X � v¤�U^XvU^X¦s^.§
o  

 

In Eq. (32), the parameter x̂ denotes the final time. Also, 

Q and R are two weight matrices that are obtained through 

optimization. The equation for the control input associated 

with this objective function is obtained as given in Eq. (33).  

 

(33) vU^X 
 ���%¨¤�U^XnU^X 
 

where B is the matrix multiplier for the control input in the 

linearized system, and  �U^X  is obtained from Eq. (34) 

below. 

 

(34) 0 
 �� U^X � ¥ � �U^X¨��%¨¤�U^X� �U^X© � ©¤�U^X 
 

where © is the matrix multiplier for the state vector in the 

linearized system.  

3-3 Design of predictive model controller 

In most control projects where the use of predictive model 

control is considered a necessity, the linear type predictive 

model controller option is preferred. In particular, in 

industrial projects, due to the need for high speed and 

reliability along with cost considerations, this type of 

controller has been almost the only option for designers 

[15]. In general, the pre-linear model controller can be 

implemented in two ways: online (implicit) and offline 

(explicit). In the implementation of the online type, the 

optimization problem of the control cost function is solved 

online in each time step, and the answer to this problem 

will determine the optimal control order. But in the offline 

method, the optimization problem is solved once for all 

possible values of the state vector and the optimal answer is 

calculated as an explicit function of the variables of the 

state vector and loaded into the controller memory. At each 

time step then, the controller will determine the value of 

this function based on the values of the state variables to 

issue the control commands. 

As such, the time required to perform control calculations is 

reduced, hence making it possible to implement the devised 

controller on the control hardware with limited processing 

volume.  

3-3-1 Designing an explicit linear predictive model 

controller  

 
In the design of the predictive model controller, the 

calculation of the optimal control command vector requires 

solving a quadratic optimization problem at each time step. 

Although efficient quadratic programming solvers based on 

active set and interior point methods are available today, it 

is not possible to use these solvers in control hardware with 

limited processing capacity.  

To reduce the need for online processing power to increase 

the speed of calculating the control command in the 

constrained linear predictive model controller used for real 

applications, the explicit predictive model controller is 

usually used. This controller has all the stability and 

performance features of the equivalent online predictive 

(28) 
c 
 0 � ª\], \�, \�«¤ 
 �ª\], \� , \�«¤ 
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model controller, and only the need for calculations related 

to solving the online optimization problem has been 

eliminated. For this purpose, multi-parameter programming 

is used to solve the optimization problem of the predictive 

model controller. 

Parametric programming is a term used to solve the 

optimization problem for a range of values of a parameter. 

The difference between parametric programming and multi-

parameter programming is that in the latter we deal with a 

vector of parameters. We show that in this method, the 

control law can be calculated offline in the form of a 

continuous piecewise affine function of the state variables 

and the reference signal vector such as ��U¬X 
 ��­ � �̀. 
This control law can be set in the form of a reference table 

and loaded in the memory of the control hardware, thus 

reducing the online processing effort to finding the i related 

to the state vectors and the reference signal. 

The main idea of the multi-parameter algorithm is to use 

the necessary and sufficient conditions of optimality to 

construct the critical region in the neighborhood of a given 

parameter and search the space outside this region in a 

recursive method. 

The predictive model controller is usually implemented as 

discrete time in control systems. Therefore, we convert the 

state equations into the discrete time state space equation 

form using the zeroth order retainer and the sampling time �®. 
(35) nU¬ � 1X 
 ©�nU¬X � ¨�vU¬X 

Therefore, the output equations of the discrete-time system 

will be in the following form. 

(36) ¯U¬X 
 °�nU¬X 
Relations (35) and (36) express the model based on which 

the predictive model controller is developed. Therefore, this 

model is called control-oriented model. With the aim of 

including the defined constraint on the rate of acceleration 

changes in the control equations and also creating the 

integration behavior in the controller to reduce the steady 

state error, the control input by relating its increase value at 

each sampling time as vU¬X 
 vU¬ � 1X � ΔvU¬X in the 

form of new state variables, we add to the equations of the 

previous control-oriented model[30] . 

(37) 

n²U¬ � 1X 
 ©²n²U¬X � ²̈∆vU¬X	wnU¬ � 1XvU¬X y 
 |©� ¨�0 ´ } w nU¬XvU¬ � 1Xy� |¨�́} ∆vU¬X 
This new control-oriented model is called the augmented 

model. The output equations of the augmented model can 

be expressed as follows. 

(38) 

¯U¬X 
 °²n²U¬X	¯U¬X 
 £°� 0¦ w nU¬XvU¬ � 1Xy 
 

By defining µ� and µ� as prediction and control horizons, 

the input and output equations of the prediction model can 

be calculated using the following equation. 

(39) 	 
 � w nU¬XvU¬ � 1Xy � �Δ¶ 

In the equation of the above forecasting model, Y vector 

can be taken from equation (40), 

(40) 	 
 · ¯U¬ � 1|¬X¯U¬ � 2|¬X⋮¯U¬ � µ�|¬Xº 
∆U vector from equation (41), 

(41) 

Δ¶ 
 · ΔvU¬|¬XΔvU¬ � 1|¬X⋮ΔvU¬ � µ� � 1|¬Xº

 · Δ��U¬|¬XΔ��U¬ � 1|¬X⋮Δ��U¬ � µ� � 1|¬Xº 

matrix A from equation (42), 

(42) � 
 ���
� °²©²°²©²�⋮°²©²»¼��

�� 
and finally obtained the matrix ϕ from equation (43). 

(43) � 
 ���
� °² ²̈ … 0°²©² ²̈ … 0⋮°²©²»¼ ²̈ ⋱… ⋮°²©²»¼�»¿ ²̈��

�� 
 

3-3-2 Cost function 

 
The basis of the predictive model control method is 

associated with the use of a function of inputs and outputs 

(or state variables) known as the performance function, 

which should be optimized in the prediction horizon while 

satisfying the constraints in the problem. The state variables 

in the future time are calculated using the predictive model 

and the system conditions in the present time Un²U¬|¬X 
n²U¬XXas the initial conditions of the relationship (37). 

Solving this optimization problem gives the sequence of 

control inputs obtained as Δ¶ 
 £∆��U¬|¬X, … , ∆��U¬ �µ��%|¬X¦¤. Based on the descending horizon control rule 

then, the first input of this sequence is applied to the control 

system and the same process is repeated again in the next 

time steps. 

The cost function in predictive model control is commonly 
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chosen as a linear or quadratic function. Although solving 

the first-order equation requires less computational volume 

than solving the second-order equation, the existence of the 

overall minimum value is not guaranteed in this method. 

Therefore, the cost function is chosen in the form of a 

quadratic function so that due to the convexity of this 

function, the existence of a local minimum is equivalent to 

the existence of a global minimum (a necessary and 

sufficient condition for optimality). The cost function for 

the pursuit problem is defined as follows.  

(44) 

 

h

À£¯U¬ � 0|¬X � ÁU¬ � 0|¬X¦¤¥£¯U¬ � 0|¬X»¼

�Â%
� ÁU¬ � 0|¬X¦ � À Δv¤U¬ � Ã|¬X�ΔvU¬ � Ã|¬X»¿�%

ÄÂo  

 
In the cost function of the investigated problem, Q is a 

positive definite symmetric matrix and R is a positive 

scalar.Also,ÁU¬ � 0|¬X£n��U¬ � 0|¬X Å��U¬ � 0|¬X Å��U¬ � 0|¬X¦¤ 

is the reference vector during the prediction window and 

expresses the controller's expectation of the behavior of the 

reference vector in future times. The values of the elements 

of this vector during the prediction window are usually 

considered constant and equal to the values of the reference 

signal at the sampling moment k. It is possible at times to 

predict the changes of the controller's reference signals in 

advance, a capability known as "previewing" the reference 

signal in the control of the predictive model. In reality, 

previewing the reference signal actually means a more 

accurate definition of the control expectations in the future, 

significantly improving the system performance, 

particularly in systems with fast dynamics. 

The cost function in matrix form can be expressed as 

follows. 

(

45) 

h

 ���
� ¯U¬ � 1|¬X � ÁU¬ � 1|¬X¯U¬ � 2|¬X � ÁU¬ � 2|¬X⋮¯�¬ � µ�Æ¬: � ÁU¬ � µ�|¬X���

�¤
ÇÈÈÈÈÈÈÈÈÈÉÈÈÈÈÈÈÈÈÈÊ�Ë�/ÌxË

~¥ ⋯ 0⋮ ⋱ ⋮0 ⋯ ¥�ÇÈÈÈÉÈÈÈÊÎÏ ���
� ¯U¬ � 1|¬X � ÁU¬ � 1¯U¬ � 2|¬X � ÁU¬ � 2⋮¯�¬ � µ�Æ¬: � ÁU¬ � µÇÈÈÈÈÈÈÈÈÉÈÈÈÈÈÈÈ��/Ìx

� · ΔvU¬|¬XΔvU¬ � 1|¬X⋮ΔvU¬ � µ� � 1|¬Xº
¤

ÇÈÈÈÈÈÈÉÈÈÈÈÈÈÊÐÑË
~� ⋯ 0⋮ ⋱ ⋮0 ⋯ ��ÇÈÈÈÉÈÈÈÊ/Ï

· ΔvU¬|¬XΔvU¬ � 1|¬X⋮ΔvU¬ � µ� � 1|¬XºÇÈÈÈÈÈÉÈÈÈÈÈÊÐÑ
 U	 � �cpX¤¥ÏU	 � �cpX � Δ¶¤�ÏΔ¶ 

(

46) 

hUΔ¶, n², �cpX 
 Δ¶¤ª�Ï � �¤¥Ï�«Δ¶ � 2 !£� �´¦ | n²�cp}C¤ ¥Ï�	Δ¶� �cp¤¥Ï�cp � n²¤�¤¥ÏU�n² � 2�cpX
 12Δ¶¤ 2ª�Ï � �¤¥Ï�«ÇÈÈÈÉÈÈÈÊÒÓ Δ¶
� | n²�cp}¤ÇÈÉÈÊ­Ë

|�¤�´} 2	¥Ï�ÇÈÈÉÈÈÊℱ
Δ¶

� �cp¤¥Ï�cp � n²¤�¤¥ÏU�n² � 2	�cpXÇÈÈÈÈÈÈÈÈÈÈÉÈÈÈÈÈÈÈÈÈÈÊ»Ó  

 

By definition ­ 
 £n²¤U¬X �cp¤¦¤  ،ÕÓ 
 2ª�Ï � �¤¥Ï�« ،ℱ 
 2	£�¤ �´¦¤¥Ï� و   µÓ 
 �cp¤¥Ï�cp � n²¤�¤¥ÏU�n² �2	�cpX The cost function can be written in a simpler way. 

(47) hUΔ¶, ­X 
 12Δ¶¤ÕÓ	Δ¶ � ­¤ℱ	Δ¶ � µÓ 

 
Note that the optimization variable, similar to the real-time 

linear predictive model controller, is the vector of changes 

in the control input (changes in the angle of the missile 

actuator) in the control horizon and the vector x (including 

the vector of state variables at the current moment, the 

control input in the previous time step, and the reference 

signal during prediction horizon) are simply the vectors of 

optimization parameters. To make calculations easier in the 

next steps, first we express the above quadratic matrix 

function in the complete square form as [16],  

(48) 
h 
 12 ªΔ¶�ÕÓ�%	ℱ¤­«¤ÕÓªΔ¶�ÕÓ�%	ℱ¤­«

� 12­¤ℱ	ÕÓ�%	ℱ¤­ � µÓ 

 

Considering that the only optimization variable in this 

problem is the ∆U vector and in the problem considered 

here we are only looking to find the minimizer function in 

terms of the problem parameters (the vector of generalized 

state variables and the reference signal during the forecast 

horizon), the terms in which the ∆U vector is absent have 

no effect on the calculation of the gradient of the cost 

function and, therefore, these terms can be omitted in the 

definition of the cost function. Finally, by a change in the 

variable  Ö 
 ×¶�	ÕÓ�%	ℱ¤­ , the cost function can be 

rewritten in the following simple form. 

(49) h ̅ 
 12 Ö¤ÕÓÖ 

 
It is obvious that this function is a definite biconvex 

function due to the positive definite ÕÓ matrix. 

3-3-3 Constraints of the explicit predictive model 

controller optimization problem 

 

Naturally, the control constraints of the problem will be 

similar to that as the previous section. To solve the problem 
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in the multi-parameter optimization framework, we write 

the constraints of problem (50) as below.  

(50) 

~ �Ñ�ÐÑ�� �ÇÉÊÙ
Δ¶ ≤

���
���
��0»¿×u0»¿×u0»¿×u

�%��%0»¿×%
0»¿×u»¼0»¿×u»¼0»¿×u»¼0»¿×u 0»¿×% 0»¿×u»¼��� 0u»¼×u»¼0u»¼×u»¼���

���
��

ÇÈÈÈÈÈÈÈÉÈÈÈÈÈÈÈÊÜ

� nU¬XvU¬ � 1X�cp �ÇÈÈÉÈÈÊ­

�
���
���
�¶��Ý¶�²]�Δ¶��ÝΔ¶�²]�Y��Ý	�²] ���

���
ÇÈÈÉÈÈÊÞ

	
�Δ¶ ≤ ß­ �Þ 

 

Finally, to solve the optimization problem by the quadratic 

multiparameter method, we map the constraints of the 

problem to the z variable using the change of variable Δ¶ 
 Ö�ÕÓ�%	ℱ¤­. 

(51) 

��Ö�ÕÓ�%ℱ¤­: ≤ ß­ �Þ	�Ö ≤ �ß � �ÕÓ�%ℱ¤:ÇÈÈÈÈÉÈÈÈÈÊà ­ �Þ 

By defining � 
 ß � �ÕÓ�%ℱ¤ , the constraints of the 

quadratic multiparameter problem can be rewritten in the 

following simple form. 

(52) �Ö ≤ �­ �Þ 

Therefore, the quadratic multi-parameter problem related to 

an explicit predictive model control scheme for missile 

guidance with the ability to predict or preview the reference 

signal is expressed as follows.  

(53) 
h∗̅U­X 
 min� 12 Ö¤ÕÓÖ	�. ^.				�Ö ≤ �­ �Þ 

 

The optimization variable of this problem is the vector z ∈ ℝäå, which is the result of the linear mapping of the 

vector of control input changes. Therefore, the number of 

design variables of the problem will be µ�. The parameters 

of the optimization problem also include the state vector at 

the current moment, the control input at the previous time 

step, and the reference signal during the forecast horizon. 

Therefore, the number of problem parameters is equal to 8 � µ�. It should be noted that unlike online optimization, 

the solution to this problem is not an optimal vector, but 

rather it is the optimizer function Ö∗�nU¬X, vU¬ �1X, ÁU¬ � 1|¬X, … , ÁU¬ � µ�|¬XX: ℝèé»¼ → ℝ»¿  , and the 

optimal value of the objective function is not a scalar, but 

rather it is the function h∗̅�nU¬X, vU¬ � 1X, ÁU¬ � 1|¬X, … , ÁU¬ � µ�|¬X::ℝèé»¼ →ℝ. Obviously, to calculate the vector of optimal changes of 

control commands during the control horizon, the variable 

change Δ¶∗ 
 Ö∗�ÕÓ�%ℱ¤­ can be used. Therefore, the 

optimal control command in this case will be equal to: 

(54) 

v∗U¬X 
 ×v∗ U¬|¬X � vU¬ � 1X
 £1 0 ⋯ 0¦ªÖ∗�ÕÓ�%	ℱ¤­«� vU¬ � 1X 
Additionally, if we are interested in calculating the optimal 

cost function of the main problem, we can calculate it as 

follows. 

(55) h∗̅ 
 �12­¤ 	ℱ	ÕÓ�%	ℱ¤­ � µÓ 

3-3-4 Solution of the multi-parameter optimization 

problem 

 

In the optimization problem (53) where ÕÓ 
 ÕÓ¤ ≻ 0, the 

goal is to find the optimal cost function h∗̅U­X and the 

optimizer Ö∗U­X in terms of the parameters of the problem. 

In this section, we show that the optimizer is a piecewise 

affine vector function of the problem parameters in the 

form Ö∗ 
 ��­ � �̀, and therefore having the state vector 

values at each moment along with the values of the control 

command of the previous time step and the reference vector 

in the horizon prediction, the optimal acceleration value of 

the host vehicle can be easily calculated with the help of 

equation (55). 

Using the constraints of the boundaries of the problem 

space, we define the multifaceted closed bounded 

polynomial set K of parameters of the optimization problem 

as follows. 

(56) � 
 ì­ ∈ ℝèé»¼|�­ ≤ µí 
Matrix T and vector N in the above relationship are used to 

determine the upper and lower limits of state variables and 

control commands at the present time along with the 

bounds on the reference signal vector in the prediction 

horizon. It is clear that the polyhedron � ⊂ ℝèé»¼ is of 

full dimensions since equality constraints were not used in 

its definition. We define the set of feasible parameters �∗ ⊆ �  as a region of parameters in which the 

optimization of the problem is possible. 

(57) �∗ 
 ì­ ∈ �|∃Ö ∈ ℝ»¿: �Ö ≤ �­ �Þí 
In the quadratic multiparameter problem stated in (61), let ´ 
 ñ1,… ,6µ� � 4µ�ó be the set of constraint indices. the 

optimal partition of the set of constraint indices I for a 
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hypothetical vector such as ­ ∈ �∗  is the following 

distribution. 

(58) 

©U­̅X
 ñÃ ∈ ´Æ∀Ö∗U­X ∈ �∗U­X:	�ÄÖ∗U­X � �Ä­ 
 ÞÄó	µ©U­̅X
 ñÃ ∈ ´Æ∃Ö∗U­X ∈ �∗U­X:	�ÄÖ∗U­X � �Ä­ < ÞÄó 
 

In terminology, A(x) and NA(x) are called active and 

passive constraints. Obviously, ©U­X ∪ µ©U­X 
 ´  and ©U­X ∩ µ©U­X 
 ∅ . In addition, the critical region 

associated with the set of active constraints © ⊂ ´  is 

defined as °�ù 
 ì­ ∈ |©U­X 
 ©í. 
First, we show that the critical regions of quadratic 

multiparameter optimization are multimodal. We use the 

KKT conditions to obtain the H representation of the 

polyhedra of the critical regions, and calculate the optimizer 

function Ö∗U­Xand the value of the optimal function h∗̅U­X 
within each critical region. For an ­̅ ∈ �∗whose active and 

passive constraints are related to it in the form U©, µ©X 
U©U­̅X, µ©U­̅XXit can be shown that: 

1. °�ù is a polyhedron. 

2. Ö∗U­̅X is an affine function of the state variables in the 

critical region of °�ù. In other words, for all ­̅ ∈ °�ùwe 

can write Ö∗U­̅X 
 ��­̅ � �̀. 
3. h∗̅ is a quadratic function of the state variables inside the 

region °�ù. In other words, for each ­̅ ∈ °�ù, we have h∗̅U­̅X 
 n¤i�­̅ � ��¤­̅ � s�. 
For this purpose, we use the first-order KKT conditions for 

problem (53). 

(59) 

∇�R 
 HÓÖ∗ � �¤ü∗ 
 0	, ü ∈ ℝ�ý»¿éþ»¼:	ü�∗U��Ö∗ �Þ� � ��­X 
 0	, 0 
 1,… ,4µ� � 6µ�	ü�∗ ≥ 0	�Ö∗ � �­ �Þ ≤ 0 

 

We know that ÕÓ ≻ 0 and therefore it is invertible. 

Therefore, we obtain Ö∗from the necessary condition for 

optimality. 

(60) Ö∗ 
 �ÕÓ�%�¤ü∗ 
And we put the result in the redundant condition of the 

complement. 

(61) ü�∗����ÕÓ�%�¤ü∗ � ��­ �Þ�: 
 0	 
We introduce ü»ù∗ and üù∗ as Lagrange coefficients 

associated with the passive and active constraints, 

respectively. Since ü»ù∗ 
 0 for passive constraints, the 

following relationship holds for active constraints. 

(62) ��ùÕÓ�%�ù¤üù∗ � �ù	­ �Þù 
 0 

Assume that the rows of �ùare linearly independent. In this 

case, üù∗ can be obtained from the above relationship and 

then ü∗can be calculated. 

(63) üù∗ 
 ���ùÕÓ�%�ù¤:�%U�ù	­ �ÞùX 
It is clear that üù∗  is an affine function of the problem 

parameters. On the other hand, we know that ü»ù∗ 
 0, and 

therefore ü∗  is an affine function of the vector of 

parameters. Now, by placing the value of ü∗in equation 

(60), Ö∗can be calculated according to the parameters of 

the problem. 

(64) Ö∗ 
 ÕÓ�%�ù¤��ùÕÓ�%�ù¤:�%U�ù	­ �ÞùX 
 

This relationship shows that the optimizer is also an affine 

function of the parameters, and as a result h∗U­X 
%� Ö∗¤U­XÕÖ∗U­X is a quadratic function of the vector of 

parameters. The value of Ö∗obtained from equation (64) 

must satisfy the initial feasibility condition. Therefore, we 

can write: 

 

(65) �ÕÓ�%�ù¤��ùÕÓ�%�ù¤:�%U�ù	­ �ÞùX < �­ �Þ 

In this way, a subspace of the parameters space is 

determined. 

(66

) 

�����²�
 �n ∈ �∗��ÕÓ�%	�ù¤��ùÕÓ�%�ù¤:�%U�ù	­ �ÞùX < �­
On the other hand, the vector of Lagrange coefficients 

calculated in (63) should satisfy the dual feasibility 

condition. Hence we have: 

(67) ���ùÕÓ�%�ù¤:�%U�ù	­ �ÞùX ≥ 0 

 

This relation specifies the subspace in which the dual 

feasibility condition holds. 

(68) ���²� 
 �n ∈ �∗����ùÕÓ�%	�ù¤:�%U�ù	­ �ÞùX ≥ 0� 
By removing the redundant constraints from relations (65) 

and (67), one can express the compact form of 

representation H related to °�ù. 

(69) °�ù 
 �����²�	 ∩ ���²� 
 

Therefore, °�ù is a polyhedron in x-space. Since �����²� 
is an open and non-zero set (it contains at least the point n̅X, 
this set is full-dimensional in x space and can be written as s0�U°�ùX 
 s0�������²�:.	In addition, in the case that 

the index set of active constraints, i.e. set A, is null, ü∗ 
 ü»ù∗ 
 0  and Ö∗ 
 0 , which means that the 

corresponding critical area is °�ù 
 ì­|0 < �­ �Þí.  

To this point, it has been assumed that the rows of the 
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matrix �ù  are linearly independent and the criterion of 

linearly independent constraints has been established. 

Therefore, the matrix �ùÕÓ�%�ù is invertible. If the rows of 

the matrix �ù  do not have linear independence, for 

example, when more than µ� constraints are active in the 

minimizer Ö∗ ∈ ℝ»¿ which is called the primal degeneracy 

state, in this case it is possible the vector of Lagrange 

coefficients ü∗may not be uniquely defined because the 

dual problem in this case is not strictly convex. Note that 

the double degeneracy (less than µ� of the constraint to be 

active in the minimizer Ö∗ ∈ ℝ»¿X	and the non-uniqueness 

of the minimizer Ö∗U­X are not possible in quadratic multi-

parameter problems because the matrix ÕÓ  is positive 

definite. 

In the case of primal degeneracy, suppose that relation (69) 

holds for two arbitrary vectors ­̅ ∈ °�ù  and ­̅̅ ∈ °�ù , 

and that it can be written ��ùÕÓ�%	�ù¤ü̅ù∗ � �ù­̅ �Þù 
 0 

and  ��ùÕÓ�%�ù¤ ü̅̅ù∗ � �ù­̅̅ �Þù 
 0. Therefore, for the 

disturbance n� 
 n̿ � n̅ , it can be stated that �ùÕÓ�%	�ù¤ü	ù∗ 
 ��ù­� . Obviously, this relation can be 

solved when �ù  is in the column space of the matrix �ùÕÓ�%�ù¤ . Therefore, as long as the relation Á�1¬ª��ùÕÓ�%�ù¤: ⋮ �ù« 
 Á�1¬£�ùÕÓ�%�ù¤¦  holds, the 

critical region will be of full dimensions. In fact, the 

dimensions of the critical area can be obtained from the 

following relationship. 

(70) 

dimU°�ùX 
 4 � 2	µ�� �Á�1¬ª��ùÕÓ�%�ù¤: ⋮ �ù«� Á�1¬£�ùÕÓ�%�ù¤¦: 
To obtain the critical region in the case that the rows of the 

matrix �ù are not linearly independent, suppose we have 


 
 Á�1¬U�ùX. Then we calculate the QR decomposition of 

the matrix ��ùÕÓ�%�ù¤ as follows. 

 

(71) ��ùÕÓ�%�ù¤ 
 ¥� 
 ¥ |v% v�0 0 } 
In the above relationship, ¥ ∈ ℝ|ù|×|ù| is the orthogonal 

matrix, � ∈ ℝ|ù|×|ù|  is the upper triangular matrix, v% ∈ ℝ�×�  is the full rank square matrix, and v� ∈ℝ�×U|ù|��X . By replacing the QR decomposition of the 

matrix ��ùÕÓ�%�ù¤  in equation (62), the following 

equation is obtained. 

(72) £� �¥�%�ù¦ |ü∗­ } 
 ¥�%	Þù 

By defining the new matrices £�¤ �¤¦¤ 
 �¥�%�ù and £�¤ Á¤¦¤ 
 �¥�%Þù , the following relationship results.  

(73) |v% v� �0 0 �} ~üù,%
∗üù,�∗­ � 
 |�Á} 

By block multiplication of matrices, we relation results. 

 v%üù,%∗ � v�üù,�∗ � �­ 
 � 

Hence,  

(74) üù,%∗ 
 v%�%��v�üù,�∗ � �­ � �: 
Now, using the value obtained for üù,%∗ and consequently üù∗ , followed by placing üù∗  in relation (70), we can 

calculate the Ö∗function as,  

(75) Ö∗ 
 �ÕÓ�%�ù¤ü∗ 
 ÕÓ�%�ù¤ zv%�%�v�üù,�∗ � �­ � �:�üù,�∗ { 
Since the minimizer is unique in this case, its value should 

be independent of the choice of üù,�∗ . Therefore, üù,�∗ 
 0 

is considered. By dividing the matrix �ù  in the form £�ù,%¤ �ù,�¤ ¦¤  , where �ù,% ∈ ℝ�×»¿  , we reach at the 

following equation. 

(76) Ö∗ 
 ÕÓ�%�ù,%¤ v%�%U�­ � �X 
The last relation shows that, in the case where the rows of 

the �ù matrix are not linearly independent, the optimizer is 

an affine function of the optimization parameters. As such, 

one can conclude that in this case as well the optimal cost 

function h∗̅U­X 
 %� Ö∗¤U­XÕÓÖ∗U­X is a quadratic function 

of the parameters. 

To calculate the critical region, similar to what was 

described in the case of linear independence of the rows of 

the matrix �ù, we use the replacement of Ö∗ in the initial 

feasibility condition. 

(77) 
�����²�
 ñ­ ∈ �∗Æ�ÕÓ�%�ù,%¤ v%�%U�­ � �X < �­ �Þó 
On the other hand, the value of üù,%∗  obtained from 

equation (73) must satisfy the dual feasibility condition. 

(7

8) 

��
,�∗
 ñ­ ∈ �∗		, üù,�∗ 	 ∈ ℝ|ù|��Æv%�%��v�üù,�∗ � �­ � �: ≥ 0
And finally, the critical area is obtained by sharing the 

image ��
,�∗  in the vector space ­ with �����²� and the 

subspace determined through the device of equations 

�­ 
 Á. 

(79) 
°�ù
 �­ ∈ �∗��­ 
 Á, ­ ∈ �����²� , ­ ∈ �Á�Ã­U��
,�∗ X� 
It is obvious that the subspace obtained from this sharing is 

a polyhedron. 

Now we have to calculate the optimizer function and the 

optimal cost function for the rest of the problem parameter 

space. For this purpose, the subspace ��Ì®. 
 �\°�ù 

should be searched to find new critical regions. 

 if � ⊆ ℝÝ  is a polyhedron and °Áo 
 ìn ∈ �|©n ≤ qí  

is a non-empty subset of X and if we also have �� 
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ñn ∈ �Æ∀Ã < 0, 0 
 1,… ,� ∶ ©�n > q� , ©Än ≤ qÄó  where � 
 dim	UqXand ��Ì®. 
 ⋃ ����Â%  holds, then in this case, 

first ��Ì®. ∪ °�o 
 �, secondly, °�o ∩ �� 
 Φ, and for 

each i≠j we have °�o ∩ �� 
 Φ . In other 

wordsì°�o, �%, … , ��í is a subset of the set X. In this 

analysis, only one of the constraints of the problem is 

evaluated during each step. 

The above theorem also provides a solution for dividing 

non-convex sets �\°�o into polyhedral subsets �� . For 

each �� a new vector n� is determined by calculating the 

center of the Chebyshev sphere. 

 

(80) 

��n],�,� �	�. ^.				��	­ � �‖��‖ ≤ µ�	�Ö ≤ �­ �Þ 

 

The value of the optimizer Ö�∗  and those of the active 

constraints �ùU]�X , �ùU]�X , �ùU]�X , and finally °��  are 

then determined. This theorem is used to divide ��\°�� 
into multifaceted subsets by iterative algorithm method. 

Note that the last theorem may cause critical regions to be 

divided into several subsets. Thus, after the entire parameter 

space is covered, these polymorphic regions are detected. 

Since these areas have the same optimizer function, if the 

union of these critical areas form a convex set, the more 

compact form of the partition resulting from the 

combination of these two areas is presented [16]. The 

recursive algorithm of problem space extraction (53) is 

summarized as follows [16]. 

 

Algorithm 1- Algorithm of allocation of space to critical 

areas 

1. Selection of the initial vector ­o within the multifaceted 

set K by calculating the center of the Chebyshev sphere  

   using equation (80) 

2. Checking the value of ε 

     2-1. If  � ≤ 0 , then solution of problem (53) is 

impossible for all x in K and this loop iteration stops. 

     2-2. Otherwise, register the vector ­ 
 ­o 

3. Determining active constraints for ÖU­�X∗ through equation 

(58) 

4. Using relations (60) to (63) and determining �ùU]�X , �ùU]�X , and �ùU­�X 
5. Checking the linear independence of �ùU­�X 
    5-1. Calculation of üU­�X∗ from equation (64) and ÖU­�X∗  

from (65) in the absence of initial degeneracy 

 

    5-2. Applying relations (66) to (67) to calculate the 

critical region °�ùU­�Xin the absence of degeneracy 

    5-3. Obtaining üùU­�X,%∗ from the equation (75) and ÖU­�X∗ from (77) in the case of initial degeneracy 

 

    5-4. Using relations (78) to (80) to calculate the 

critical region °�ùU­�X in case of degeneracy 

 

6. The partition of the space ��Ì®. 
 �\°�ù through the 

one-to-one direction change of the constraints that played 

    a role in the definition of °�ùU­�X 
7. Repeat the loop for all newly created areas 

 
It was stated before that the main drawback of this 

algorithm is that sometimes a critical region with the same 

solution is divided into more than one polygon by the 

algorithm. Figure 2 shows the process of generating the 

space of a symbolic two-parameter problem by the 

mentioned algorithm. 

 
Fig.2 - The steps of partitioning the parameter space (two-dimensional) 

using the algorithm [15]: a) forming °�o by calculating the center of the 

Chebyshev sphere, b) obtaining the subspace �%  by inverting the 

constraint number 1, c) extracting the entire parameter space, d) The major 

problems of the algorithm in dividing the critical region °�% into two 

different multipliers and the need to combine these two regions in the next 

step. 

 

As it is well shown in this figure, after the completion of 

the algorithm implementation of the parameter space to the 

critical areas, it is necessary to examine the created 

polygons one by one, so that if the necessary conditions are 

met, these polygons one can be merged together. Usually, 

this process allocates the most time to solve quadratic 

multi-parameter optimization. 

3-3-5 Controller stability analysis and solution 

feasibility condition 

 
In general, the stability of the predictive model controller is 
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not guaranteed in advance. Furthermore, the controller may 

direct the state variables to a part of the state space where 

no optimal response satisfying the constraints of the 

problem can be computed in finite time. Therefore, the 

controller of the predictive model can be implemented 

when the stability and the condition of the existence of the 

solution in the entire problem space are examined. 

The stability of the predictive model controller feedback 

loop has been investigated by several researchers. Most of 

the approaches to prove the stability of the predictive model 

control are essentially dependent on the arguments of 

Kirtshi and Gilbert, which show that under some conditions, 

the optimal objective function is actually a Lyapunov 

function. In these types of controllers, stability is generally 

a complex function of various adjustable parameters such 

as µ�  ،µ�  ،�  ، , and � . If a short control horizon is 

selected, the controller can easily become unstable. To 

avoid this situation, the prediction horizon can be 

considered very large (and ideally infinite). It is clear that 

such a choice will lead to growing increase in the 

processing volume of the controller. 

Another way to ensure the stability of the controller for an 

arbitrary prediction horizon is to apply the Terminal 

constraint on the last state vector in the prediction horizon . 

In this way, we will ensure that the state vector will 

converge to a certain vector at the end of the prediction 

horizon. The drawback of the mentioned method is that the 

equality condition of the Terminal constraint may cause 

inefficiency of the controller operation [17]. In addition, in 

order for such an approach to be possible, the open loop 

system must be achievable in addition to sustainability [18]. 

As it was shown earlier, the system studied in this research 

is not fully controllable and therefore all the state space 

vectors are not accessible in this problem and this method 

cannot be used to ensure the stability of the controller. 

However, it has been shown that the stability of the 

controller with a limited prediction horizon is also possible 

in the absence of the. Specifically, it is proved in that a 

closed-loop control system with predictive model controller 

is asymptotically globally stable if and only if the 

associated optimization problem is feasible. Therefore, by 

showing that the constrained optimization problem is 

possible in any situation, we can implicitly prove the 

stability of the controller. 

 

 

4- Simulations and results 

 
After completing the design of the controllers used, the 

performance of the designed controllers is investigated in 

this section. The parameters of the missile and the values of 

the initial parameters of the missile and target engagement, 

and the initial conditions in all these simulations are the 

same and according to Table 1. 
 

 

Table 1 - Parameters of the homing missile [13] 

vari

able 
value 

Vari

able 
value 

� 
0. 42 �� h]  

100 kg. �� k 0. 68 m 
h� 5700 kg. �� � 1200 kg h� 

5600 kg. �� 

� 1. 1558 

kg/�u 
��5 

-27. 31 

��� -28. 16 ��7;  -26. 57 

��78  -27. 92 �]� 0. 46 ��� 57. 16 �]5 -0. 37 ��5 0. 08 �]7l  2. 12 ��78  5. 74 ��� -56. 31 ��5 -5. 62 ��7;  0. 09 

 

 

Table 2 - Initial parameters of missile and target engagement [13] 

vari

able 
value 

Vari

able 
value �U0X 45 

(deg) 
_� 

600 

m/s 

Φ�U0X 0 rad 
_. 600 

m/s \] 0. 1 

rad/s 

n.U0X 1136 m 

\� 0. 1 

rad/s 

¯.U0X 8603 m 

\� 0. 2 

rad/s 

Ö.U0X 5192. 8 

m n�U0X 0 m ��x 30 

(deg) ¯�U0X 0 m ��x  -30 

(deg) Ö�U0X 0 m �¤ 
19. 

6*cos(t) 

   

 

 

4-1 Linear equations of missile movement and 

interception in three-dimensional space 
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For a nonlinear system, consider the general equation (81): 

(81)  n� 
 pUn, vX 
 
To obtain the linear system n� 
 ©n � ¨v  corresponding 

to the nonlinear system (81), we use relations (82): 

(82) 

© 
 �pUn, vX
�n |n 
 no,			v 
 vo j 

 ¨ 
 �pUn, vX
�v |n 
 no,			v 
 vo j 

 

In relation (76), no and vo are the operating points of 

linearization. According to this relationship, to find the two 

matrices ©and¨, we must find the partial derivatives of p 

with respect to nandv  at the operating point (i.e., the 

Jacobian matrix), respectively. 

We  now define a new linear system as Eq.  (83): 

(83)  n� 
 ©n � ¨v 

In Eq.  (83), the state and control vectors are defined as  n 
 ªno¤ , n%¤ , n�¤ , nu¤ , �, �� , �, �� «¤ and v 
 ª9], 9�, 9�«¤ , 

respectively. In fact, we define a linear system in such a 

way that it includes all the state variables defined in the 

previous sections. According to the above equations, we 

will have the numerical values given in Table 2, and finally 

using the equation (82), we arrive at the following matrices 

for © and ¨. ©




��
��
��
��
��
��
�� 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0 0 0�6. 67 7. 23 0 0 �6. 70 �204. 6 0 0 0 0 �5. 22 �1. 04 �8. 09 02. 41 2. 41 0 0 �3. 46 0. 682 0 0 0 0 4. 8 �2. 41 �4. 17 00 0 0 0 �0. 0116 0. 0003 �0. 0003 �0. 0175 0. 0003 1 0 0 0 00 0 0 0 0. 0114 0. 0011 0. 0142 0. 0175 1 0 �0. 0001 0 0 00 0 0 0 0. 0063 �0. 0137 0 1 �0. 0175 0 0. 0004 0 0 00 0 0 0 0. 45 �0. 36 0 0 0 0 0 0 0 00 0 0 0 0 �0. 47 0 0 0 0 0 0 0 00 0 0 0 �0. 49 0 0 0 0 0 0 0 0 00 0 0 0 0. 0118 0 0. 0002 0 0 0 0. 0082 0 0 00 0 0 0 0. 0112 0. 0013 �0. 0002 0 0 0 0. 0001 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 �0. 1672 �0. 0609 0 0 0 0 0 0 0 0��

��
��
��
��
��
��

 

¨ 


��
��
��
��
��
��
�� 0 0 00 0 00 0 00 0 00 0 00 0 00 0 02. 0994 0 00 �0. 4616 00 0 �0. 49370 �3. 17c�! 0. 00120 �2. 10c�" �2.33c�"0 0 00 9. 6252 �567.3836��

��
��
��
��
��
��

 

In obtaining the numerical values of these matrices, the 

operating points are considered as follows (actually, all 

operating points should have been considered zero, but 

since the denominator of some ratios became zero and 

undefined, small near values are considered for some 

operating points instead).  noo 
 £0,0¦¤  ,  n%o 
 £0,0¦¤  ,  n�o 
 | #%èo , #%èo , #%èo}¤ ,  nuo 
£0,0,0¦¤ ,  �o 
 #þ ,  ��o 
 0 ,  �o 
 1 , s�o 
 0 

4-2  PID controller simulation performance  

 
In this section, the performance of the PID controller, 

whose parameters are adjusted by the Ziegler-Nichols 

method according to Table 3, is examined. 

 

Table 3 – Parameters of the PID controller  

gain type  gain amount  0.	732	 0.	417  1.	669  

 

The simulation results for PID controller performance are 

shown in Fig. 3 to 6. 

 

 
 

Fig. 3-The missile-target relative distance using the PID controller 

 
Fig. 4 -Changes of elevation and side angles with time using the PID 

controller 
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The graphs in Fig. 3 and 4 show that in about 50 seconds, 

the relative distance between the missile and the target 

reaches zero. Also, the altitude and side angles reach their 

target values at the beginning of the flight. The control 

input in the diagram o

towards the target according to the trajectories shown in Fig. 

6 and hit the target at a height of 310 meters. In general, it 

can be said that the performance of the PID controller is 

poorly evaluated, since the flight t

rather too long for a short

between the missile and the target occurred at a too low 

altitude, which is not considered an appropriate height for 

collision in air defenses. In addition, in the PID 

the angles reach their reference values at the beginning of 

the missile's flight and do not converge during the flight, 

and this makes the target recognize the missile's path, hence 

lures the target to try to evade. The PID controller 

coefficie

output of this method is normally fine and usually works 

better than that from optimization methods. Use of 

optimization tools in adjusting the PID controller gains are 

time

reasonable due to spending too long a time. Moreover, the 

linearization required for the PID controller will make PID 
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Fig.6  –Missile-target trajectories using the PID controller
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target trajectories using the PID controller

The graphs in Fig. 3 and 4 show that in about 50 seconds, 

the relative distance between the missile and the target 

reaches zero. Also, the altitude and side angles reach their 

target values at the beginning of the flight. The control 

input in the diagram of Fig. 5 forced the missile to move 

towards the target according to the trajectories shown in Fig. 

6 and hit the target at a height of 310 meters. In general, it 

can be said that the performance of the PID controller is 

poorly evaluated, since the flight t

rather too long for a short-range scenario, and the collision 

between the missile and the target occurred at a too low 

altitude, which is not considered an appropriate height for 

collision in air defenses. In addition, in the PID 

the angles reach their reference values at the beginning of 

the missile's flight and do not converge during the flight, 

and this makes the target recognize the missile's path, hence 

lures the target to try to evade. The PID controller 

nts are obtained using Ziegler

output of this method is normally fine and usually works 

better than that from optimization methods. Use of 

optimization tools in adjusting the PID controller gains are 

consuming and the desired result

reasonable due to spending too long a time. Moreover, the 

linearization required for the PID controller will make PID 
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The graphs in Fig. 3 and 4 show that in about 50 seconds, 

the relative distance between the missile and the target 

reaches zero. Also, the altitude and side angles reach their 

target values at the beginning of the flight. The control 

f Fig. 5 forced the missile to move 

towards the target according to the trajectories shown in Fig. 

6 and hit the target at a height of 310 meters. In general, it 

can be said that the performance of the PID controller is 

poorly evaluated, since the flight time in this controller is 

range scenario, and the collision 

between the missile and the target occurred at a too low 

altitude, which is not considered an appropriate height for 

collision in air defenses. In addition, in the PID 

the angles reach their reference values at the beginning of 

the missile's flight and do not converge during the flight, 

and this makes the target recognize the missile's path, hence 

lures the target to try to evade. The PID controller 

nts are obtained using Ziegler-Nicols method. The 

output of this method is normally fine and usually works 

better than that from optimization methods. Use of 

optimization tools in adjusting the PID controller gains are 

consuming and the desired result may not be quite 

reasonable due to spending too long a time. Moreover, the 

linearization required for the PID controller will make PID 
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The graphs in Fig. 3 and 4 show that in about 50 seconds, 

the relative distance between the missile and the target 

reaches zero. Also, the altitude and side angles reach their 

target values at the beginning of the flight. The control 

f Fig. 5 forced the missile to move 

towards the target according to the trajectories shown in Fig. 

6 and hit the target at a height of 310 meters. In general, it 

can be said that the performance of the PID controller is 

ime in this controller is 

range scenario, and the collision 

between the missile and the target occurred at a too low 

altitude, which is not considered an appropriate height for 

controller, 

the angles reach their reference values at the beginning of 

the missile's flight and do not converge during the flight, 

and this makes the target recognize the missile's path, hence 

lures the target to try to evade. The PID controller 

Nicols method. The 

output of this method is normally fine and usually works 

better than that from optimization methods. Use of 
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domains. In addition, by changing the coefficients of the 

PID controller, its results are
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achieve such a state, its control effort will be greatly 
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time span. In air defense systems, particularly in short range

scenarios, time plays a very key role, even if some control 

effort is increased. In the end, it can be said that although 

the PID controller is simpler from an implementation 

perspective, it does not respond properly to complex 

systems. As a result, a con

complex nonlinear systems will be more reliable.
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Riccati equation, the control input and gain matrix are 
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The graphs in Fig. 8 shows that in about 32.3 seconds, the 

relative distance between the missile and the target reaches 

zero, resulting in collision. Also, the altitude and side 

angles reach their target values at the beginning of the flight, 

as shown in F

Figure 10 forced the missile to move towards the target 

according to the trajectory drawn in Figure 11, and hit the 

target at a height of 823 meters. As mentioned earlier, in the 

design of this LQR controller, the

optimization method was employed to calculate the weight 

matrices, rendering this controller outperform the PID 

controller. Although a better result was obtained, it can be 

stated that the performance of the LQR controller is yet 

evaluated 

controller is still rather large for a short

engagement, plus the fact that the height at which missile

target collision occurred is still rather low, making this 
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the missile and the target collide at a higher altitude, and the 

target should not come close to the defense site positions. 
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Missile-target trajectories using the LQR controller

The graphs in Fig. 8 shows that in about 32.3 seconds, the 

relative distance between the missile and the target reaches 

zero, resulting in collision. Also, the altitude and side 
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ig. 9. The control input in the diagram of 
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according to the trajectory drawn in Figure 11, and hit the 
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design of this LQR controller, the
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controller. Although a better result was obtained, it can be 
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target collision occurred is still rather low, making this 

controller still inappropriate for air defense. As stated 
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the missile and the target collide at a higher altitude, and the 

target should not come close to the defense site positions. 
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values at the beginning of the missile's flight rather than 

converge throughout the flight, which offers the target 

chances to recognize or foresee the missile's path and try to 

evade the missile and avoid collision. The we

of this LQR controller are obtained using the particle 

swarm optimization method. Also, for the LQR controller, 

linearization must be done, with the linearized model 

effective only in limited operating points. Due to missile 

dynamics, lineari

time to collision using this LQR controller is rather high, 

which is not desirable, since time plays a key and decisive 

role in a missile
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The diagram in Figure 12 shows the relative distance 

between the missile and the target, and this relative distance 

gets close to zero in about 12.75 seconds and the collision 

takes place. This time is an appropriate time for air defenses 

in short ranges, 

moves towards the target in this rather short time, and the 

missile does not leave a chance for the target to maneuver 

and avoid collision with the missile. Figure 13 shows that 

the flight angles converge at a prop

Figure 14, the control input has also been applied well. This 

control input caused the missile to move towards the target 

according to the trajectory shown in Figure 15, intercepting 

the target at a height of 4160 meters. Online linea

method was used in MPC controller design and according 

to the simulations, this controller has performed much 

better than PID and LQR controllers. It can be said that the 

performance of the MPC controller is evaluated as superior, 

because the flig

for a short

height at witch collision took place is also quite proper for 

short

defenses, it is better fo

at a higher altitude so that the target should not come close 

to the defense site. 

A quantitative comparison between the results of the 

controllers studied in this article is presented in Table 4.
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Missile trajectory and target 

The diagram in Figure 12 shows the relative distance 

between the missile and the target, and this relative distance 

gets close to zero in about 12.75 seconds and the collision 

takes place. This time is an appropriate time for air defenses 

in short ranges, because after firing, the missile quickly 

moves towards the target in this rather short time, and the 

missile does not leave a chance for the target to maneuver 

and avoid collision with the missile. Figure 13 shows that 

the flight angles converge at a prop

Figure 14, the control input has also been applied well. This 

control input caused the missile to move towards the target 

according to the trajectory shown in Figure 15, intercepting 

the target at a height of 4160 meters. Online linea

method was used in MPC controller design and according 

to the simulations, this controller has performed much 

better than PID and LQR controllers. It can be said that the 

performance of the MPC controller is evaluated as superior, 

ht time with this controller is quite suitable 

range surface-to-air engagement. In addition, the 

height at witch collision took place is also quite proper for 

range defenses. As stated earlier, in short

defenses, it is better for the missile and the target to collide 

at a higher altitude so that the target should not come close 

to the defense site.  

A quantitative comparison between the results of the 

controllers studied in this article is presented in Table 4.
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explicit linear predictive model 

The diagram in Figure 12 shows the relative distance 

between the missile and the target, and this relative distance 

gets close to zero in about 12.75 seconds and the collision 

takes place. This time is an appropriate time for air defenses 

because after firing, the missile quickly 

moves towards the target in this rather short time, and the 

missile does not leave a chance for the target to maneuver 

and avoid collision with the missile. Figure 13 shows that 

er time. According to 

Figure 14, the control input has also been applied well. This 

control input caused the missile to move towards the target 

according to the trajectory shown in Figure 15, intercepting 

the target at a height of 4160 meters. Online linearization 

method was used in MPC controller design and according 

to the simulations, this controller has performed much 

better than PID and LQR controllers. It can be said that the 

performance of the MPC controller is evaluated as superior, 
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5- Conclusion 
 

In this paper, an innovative approach for the guidance and 

control of air defense missiles was proposed, leveraging an 

online linear model predictive control (MPC) framework 

for an integrated three-dimensional (3D) missile-target 

model. The study began with the complete derivation and 

development of the integrated guidance and control (IGC) 

equations for both the missile and the target, forming the 

foundation for designing advanced controllers. To assess 

the effectiveness of the proposed controller, benchmark 

comparisons were performed with traditional PID and LQR 

controllers. The performance of the PID controller, as 

demonstrated by the simulations, was found to be 

suboptimal. This was attributed to its limitations, such as 

longer flight times and an inadequately defined control law, 

which led to excessive flight altitudes, thereby reducing 

effectiveness in air defense scenarios. Subsequently, an 

LQR controller was designed and evaluated, showing 

improved performance compared to the PID controller, but 

still falling short of achieving optimal results. The primary 

contribution of this work lies in the design and 

implementation of the proposed online linear MPC. This 

controller was designed to optimize the missile’s trajectory 

in real-time by minimizing the time to collision and 

ensuring precise control within a feasible range. According 

to the simulation results, the proposed controller achieved a 

time to collision of approximately 12.75 seconds, a value 

that meets the operational requirements for air defense 

systems. Furthermore, the control law generated by the 

online MPC enabled the missile to maneuver effectively, 

resulting in a successful interception at an altitude of 4160 

meters. This altitude, being both operationally 

advantageous and tactically significant, ensures that the 

missile engages the hostile target within a range and height 

that minimizes the chances of evasion through 

unpredictable maneuvers by the target. The findings of this 

research highlight the superiority of the proposed online 

linear MPC over conventional PID and LQR controllers. 

The ability of the predictive controller to deliver precise, 

efficient, and adaptive control in real-time makes it highly 

suitable for air defense applications, where rapid decision-

making and high accuracy are critical. This novel 

integration of online MPC with an IGC framework not only 

improves missile-target engagement performance but also 

paves the way for more advanced implementations in 

modern air defense systems. 
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