Effects of Inoculation and Fermentation Time on in vitro Digestibility, Microbial Population and Rumen Fermentation Characteristics of Industrial Potato Waste
Subject Areas :S.A. Muhammad 1 , I.B. Suyub 2 , F. Nobilly 3 , H. Yaakub 4
1 -
2 -
3 -
4 -
Keywords: biohydrogenation, fermentation, inoculation, rumen metabolites,
Abstract :
Potato processing generates waste that is estimated to be around 12-20% of the original potato weight. The waste can further be processed or incorporated into animal feed formulations. However, there is limited information on potentials of industrial potato waste (IPW) as ruminant feedstuff. The study aimed to deter-mine the effect of inoculation and fermentation time on in vitro organic matter digestibility (IVOMD), me-tabolizable energy (ME), rumen microbial population and ruminal fermentation characteristics. The ex-periment involved inoculation of IPW with zero inoculum (control), Lactiplantibacillus plantarum (MW296876), Saccharomyces cerevisiae (MW296931) and Aspergillus oryzae (MW297015). The experi-mental design was completely randomized design (CRD) with factorial arrangement (4 treatments×5 repli-cations×4 fermentation time). After inoculation and fermentation, the substrates were subjected to anaerobic incubation, and gas volumes were recorded at 3, 6, 12, 24, 48 and 72 h. The results revealed that there was no significant (P>0.05) interaction between treatment and fermentation time on gas production and IVOMD. The rumen microbial population revealed that total bacteria, total methanogens, Ruminococcus flavafaciens, Ruminococcus albus and Fibrobacter succinogens had no significant (P>0.05) interaction between the effect of treatment and fermentation time. However, total protozoa, total fungi and Butyrivibrio fibrisolvens exhibited a significant (P<0.05) interaction. Although the methane content (7.11±1.49-8.07±0.32 mM) of A. oryzae did not change across the fermentation time, the values recorded were lowest (P<0.05) compared to 7.77 - 13.03 mM recorded for the other treatments. A. oryzae recorded highest (P<0.05) concentration (1299.40-2085.29 µg/100 mL) of C18:0 (stearic acid) across all the fermentation time. It was concluded that microbial inoculation of IPW affects net gas production, it improves biohydro-genation process and reduces methane production. Among the three inocula used, A. oryzae is recom-mended because it recorded highest content of stearic acid via biohydrogenation process, and reduced methane gas production.
Abdul Rahman N., Abd Halim M.R., Mahawi N., Hasnudin H., Al-Obaidi J.R. and Abdullah N. (2017). Determination of the use of Lactobacillus plantarum and Propionibacterium freudenreichii application on fermentation profile and chemical composition of corn silage. Biomed. Res. Int. 2017, 1-8.
Abdullah F.A., Ali J. and Noor M.S.Z. (2020). The adoption of innovation in ruminant farming for food security in Malaysia: A narrative literature review. J. Crit. Rev. 7(6), 738-743.
Adebayo K.O., Usma A.O., Aderinboye R.Y., Adelusi O.O. Akinbode R.M. and Onwuka C.F.I. (2018). Rumen fermentation characteristics and blood profile of West African dwarf goats fed urea-treated crop by-products in the dry season. Niger. Agric. J. 49(1), 76-84.
Babaeinasab Y., Rouzbehan Y., Fazaeli H. and Rezaei J. (2015). Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage. J. Anim. Sci.. 93(9), 4377-4386.
Baffa D.F., Oliveira T.S., Fernandes A.M., Camilo M.G., Silva I.N., Meirelles Júnio J.R. and Aniceto E.S. (2023). Evaluation of associative effects of in vitro gas production and fermentation profile caused by variation in ruminant diet constituents. Methane. 2(3), 344-360.
Blümmel M. and Becker K. (1997). The degradability characteris-tics of fifty-four roughages and roughage neutral-detergent fi-bres as described by in vitro gas production and their relation-ship to voluntary feed intake. Br J. Nutr. 77, 757-768.
Boeckaert C., Vlaeminck B., Fievez V., Maignien L., Dijkstra J. and Boon N. (2008). Accumulation of trans C 18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio Community. Appl. Environ. Microbiol. 74(22), 6923-6930.
Buonaiuto G., Palmonari A., Ghiaccio F., Visentin G., Cavallini D., Campidonico L., Formigoni A. and Mammi L.M.E. (2021). Effects of complete replacement of corn flour with sorghum flour in dairy cows fed Parmigiano Reggiano dry hay-based ration. Italian J. Anim. Sci. 20(1), 826-833.
Candyrine S.C.L., Jahromi M.F., Ebrahimi M., Liang J.B., Goh Y.M. and Abdullah N. (2017). In vitro rumen fermentation characteristics of goat and sheep supplemented with polyunsaturated fatty acids. Anim. Prod. Sci. 57(8), 1607-1615.
Castillo-González A.R., Burrola-Barraza M.E., Domínguez-Viveros J. and Chávez-Martínez A. (2014). Rumen microorganisms and fermentation. Arch. Med. Vet. 46(3), 349-361.
Cavallini D., Mammi L.M.E., Biagi G., Fusaro I., Giammarco M., Formigoni A. and Palmonari A. (2021). Effects of 00-rapeseed meal inclusion in Parmigiano Reggiano hay-based ration on dairy cows’ production, reticular pH and fibre digestibility. Italian J. Anim. Sci. 20(1), 295-303.
Chalchissa G., Nurfeta A. and Andualem D. (2023). Anti-nutrient contents and methane reduction potential of medicinal plants from maize stover based diet. Heliyon. 9(11), e21630.
Contreras-Govea F.E., Muck R.E., Mertens D.R. and Weimer P.J. (2011). Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Anim. Feed Sci. Technol. 163(1), 2-10.
Cotrufo C. and Lunsetter P. (1964). The fatty acids of potato tubers (Solanum tuberosum). Am. Potato J. 41(1), 18-22.
Direkvandi E., Mohammadabadi T., Dashtizadeh M., Alqaisi O. and Salem A.Z.M. (2021). Lactobacillus plantarum as feed additive to improvement in vitro ruminal biofermentation and digestibility of some tropical tree leaves. J. Appl. Microbiol. 131(6), 2739-2747.
Ebrahimi M., Rajion M.A., Adeyemi K.D., Jafari S., Jahromi M.F., Oskoueian E., Meng G.Y. and Ghaffari M.H. (2017). Dietary n-6:n-3 fatty acid ratios alter rumen fermentation parameters and microbial populations in goats. J. Agric. Food Chem. 65(4), 737-744.
Elghandour M.M.Y., Khusro A., Adegbeye M.J., Tan Z., Abu Hafsa S.H., Greiner R., Ugbogu E.A., Anele U.Y. and Salem A.Z.M. (2020a). Dynamic role of single-celled fungi in ruminal microbial ecology and activities. J. Appl. Microbiol. 128(4), 950-965.
Elghandour M.M.Y., Tan Z.L., Abu Hafsa S.H., Adegbeye M.J., Greiner R., Ugbogu E.A., Cedillo Monroy J. and Salem A.Z.M. (2020b). Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: A review. J. Appl. Microbiol. 128(3), 658-674.
Faciola A.P. and Broderick G.A. (2014). Effects of feeding lauric acid or coconut oil on ruminal protozoa numbers, fermentation pattern, digestion, omasal nutrient flow, and milk production in dairy cows. J. Dairy Sci. 97(8), 5088-5100.
Franco M., Stefański T., Jalava T., Lehto M., Kahala M., Järvenpää E., Mäntysaari P. and Rinne M. (2021). Effect of potato by-product on production responses of dairy cows and total mixed ration stability. J. Dairy Sci. 2(2), 218-230.
Gómez L.M., Posada S.L. and Olivera M. (2016). Starch in ruminant diets: A review. Rev. Colomb. Cienc. Pecu. 29(2), 77-90.
Hamed A.A.O., Soha S.A., Fatma M.S., Sawsan M.A., Mamdouh I.M., Ibrahim M.A. and Mona S.Z. (2011). Using potato processing waste in sheep rations. J. Life Sci. 8(4), 733-742.
Hoshide A.K., Dalton T.J. and Stewart S.N. (2006). Profitability of coupled potato and dairy farms in Maine. Renew. Agric. Food Syst. 21(4), 261-272.
Hristov A.N., Lee C., Cassidy T., Long M., Heyler K., Corl B. and Forster R. (2011). Effects of lauric and myristic acids on ruminal fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 94(1), 382-395.
Hua D., Hendriks W.H., Xiong B. and Pellikaan W.F. (2022). Starch and cellulose degradation in the rumen and applications of metagenomics on ruminal microorganisms. Animals. 12(21), 1-13.
Ibrahim N.A., Alimon A.R., Yaakub H., Samsudin A.A., Candyrine S.C.L., Wan Mohamed W.N., Md Noh A., Fuat M.A. and Mookiah S. (2021). Effects of vegetable oil supplementation on rumen fermentation and microbial population in ruminant: a review. Trop. Anim. Health Prod. 53(4), 1-12.
Ibrahim W.I., Loh T.C., Samsudin A.A. and Foo H.L. (2018). In vitro study of postbiotics from Lactobacillus plantarum RG14 on rumen fermentation and microbial population. Rev. Bras. Zootec. 47, 103-112.
Kaufman J.D., Seidler Y., Bailey H.R., Whitacre L., Bargo F., Lüersen K., Rimbach G., Pighetti G.M., Ipharraguerre I.R. and Ríus A.G. (2021). A postbiotic from Aspergillus oryzae attenuates the impact of heat stress in ectothermic and endothermic organisms. Sci. Rep. 11(1), 1-13.
Koike S. and Kobayashi Y. (2001). Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204(2), 361-366.
Krizsan S.J., Nyholm L., Nousiainen J., Südekum K.H. and Huhtanen P. (2012). Comparison of in vitro and in situ methods in evaluation of forage digestibility in ruminants. J. Anim. Sci. 90(9), 3162-3173.
Lane D.J. (1991). 16S/23S rRNA Sequencing. John Wiley and Sons, New York.
Lopez-Garcia A., Saborio-Montero A., Gutierrez-Rivas M., Atxaerandio R., Goiri I., Garcia-Rodriguez A., Jimenez-Montero J.A., Gonzalez C., Tamames J., Puente-Sanchez F., Serrano M., Carrasco R., Ovilo C. and Gonzalez-Recio O. (2022). Fungal and ciliate protozoa are the main rumen microbes associated with methane emissions in dairy cattle. GigaScience. 11, 1-14.
Lyons T., Bielak A., Doyle E. and Kuhla B. (2018). Variations in methane yield and microbial community profiles in the rumen of dairy cows as they pass through stages of first lactation. J. Dairy Sci. 101(6), 5102-5114.
Makkar H.P. (2003). Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 49(3), 241-256.
McKain N., Shingfield K.J. and Wallace R.J. (2010). Metabolism of conjugated linoleic acids and 18 : 1 fatty acids by ruminal bacteria: Products and mechanisms. Microbiology. 156(2), 579-588.
Menke K.H., Raab L., Salewski A., Steingass H., Fritz D. and Schneider W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93(1), 217-222.
Menke K.H. and Steingass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7-55.
Muck R.E., Filya I. and Contreras-Govea F.E. (2007). Inoculant effects on alfalfa silage: In vitro gas and volatile fatty acid production. J. Dairy Sci. 90(11), 5115-5125.
Muck R.E. (2010). Silage microbiology and its control through additives. Rev. Bras. Zootec. 39, 183-191.
Muhammad S.A., Suyub I.B., Nobilly F. and Yaakub H. (2024). Effects of treatments and fermentation time on phenolic com-pounds, glycoalkaloid contents, and antioxidant capacity of industrial potato waste. Pertanika J. Trop. Agric. Sci. 47(4), 1-9.
Muhammad S.A., Hazwani Izzati H., Suyub I.B., Nobilly F. and Yaakub H. (2023). Nutrient Content and in vitro digestibility of potato waste fermented with Saccharomyces cerevisiae. Malaysian J. Anim Sci. 26(1), 11-17.
Ncobela C.N., Kanengoni A.T., Hlatini V.A., Thomas R.S. and Chimonyo M. (2017). A review of the utility of potato by-products as a feed resource for smallholder pig production. Anim. Feed Sci. Technol. 227, 107-117.
Norrapoke T., Wanapat M., Cherdthong A., Kang S., Phesatcha K. and Pongjongmit T. (2018). Improvement of nutritive value of cassava pulp and in vitro fermentation and microbial population by urea and molasses supplementation. J. Appl. Anim. Res. 46(1), 242-247.
Nur Atikah I., Alimon A.R., Yaakub H., Abdullah N., Jahromi M.F., Ivan M. and Samsudin A.A. (2018). Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids. BMC Vet. Res. 14(1), 1-9.
Okhonlaye O.A., Kassim A. and Helen A.O. (2020). Changes in proximate and antinutrient contents of irish potato peels fermented with Penicillium chrysogenum and Bacillus subtilis. South Asian J. Res. Microbiol. 6, 25-32.
Olowu O.O. and Firincioğlu Y.S. (2019). Feed evaluation methods: performance, economy and environment. Eurasian J. Agric. Res. 3(2), 48-57.
Orskov E.R. and Mcdonald I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92(2), 499-503.
Owens F.N. and Goetsch A.L. (1988). Ruminal fermentation. Ruminal Fermentation. Pp. 145-171 in D.C. Church, Ed., Prentice Hall, New Jersey.
Palmonari A., Cavallini D., Sniffen C.J., Fernandes L., Holder P., Fusaro I., Giammarco M., Formigoni A. and Mammi L.M.E. (2021). In vitro evaluation of sugar digestibility in molasses. Italian J. Anim. Sci. 20(1), 571-577.
Raina S., Sharma R.K., Rastogi A., Pathak A.K., Khan N. and Sharma V.K. (2023). Boiled potato waste silage as an alternate roughage for goats. Indian J. Anim. Sci. 93(11), 1083-1090.
Ramadan M.F. and Oraby H.F. (2016). Fatty acids and bioactive lipids of potato cultivars: An overview. J. Oleo Sci. 65(6), 459-470.
Ramin M., Yaakub H., Alimon A.R. and Jelan Z.A. (2011). Effects of fungal treatment on the in vitro degradation of cassava. Livest. Res. Rural Dev. 23(7), 1-6.
Sallam S.M.A., Abdelmalek M.L.R., Kholif A.E., Zahran S.M., Ahmed M.H., Zeweil H.S., Attia M.F.A., Matloup O.H. and Olafadehan O.A. (2020). The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows. Anim. Biotechnol. 31(1), 491-497.
SAS Institute. (2011). SAS®/STAT Software, Release 9.3. SAS Institute, Inc., Cary, NC. USA.
Sepelev I. and Galoburda R. (2015). Industrial potato peel waste application in food production: A Review. Res. Rural Dev. 1, 130-136.
Soloranzo L. (1969). Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799-801.
Sylvester J.T., Karnati S.K.R., Yu Z., Morrison M. and Firkins J.L. (2004). Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 134(12), 3378-3384.
Toplu H.D.O., Goksoy E.O., Nazligul A. and Kahraman T. (2013). Meat quality characteristics of Turkish indigenous hair goat kids reared under traditional extensive production system: Effects of slaughter age and gender. Trop. Anim. Health Prod. 45(6), 1297-1304.
van de Pol J.A.A., Best N., van Mbakwa C.A., Thijs C., Savelkoul P.H., Ilja I.C., Hornef M.W., Mommers M. and Penders J. (2017). Gut colonization by methanogenic archaea is associated with organic dairy consumption in children. Front. Microbiol. 8, 1-10.
Waseem Ali S., Nawaz A., Irshad S. and Ahmed Khan A. (2017). Potato waste management in Pakistan’s perspective. J. Hyg. Eng. Design. 549, 100-107.
Yu Y., Lee C., Kim J. and Hwang S. (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89(6), 670-679.
Zhou M., Hernandez-Sanabria E. and Le L.G. (2009). Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl. Environ. Microbiol. 75(20), 6524-653.
Zhou X., Stevens M.J.A., Neuenschwander S., Schwarm A., Kreuzer M., Bratus-Neuenschwander A. and Zeitz J.O. (2018). The transcriptome response of the ruminal methanogen Methanobrevibacter ruminantium strain M1 to the inhibitor lauric acid. BMC Res. Notes. 11(1), 1-10.
Zhu W., Wei Z., Xu N., Yang F., Yoon I., Chung Y., Liu J. and Wang J. (2017). Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. J. Anim. Sci. Biotechnol. 8(1), 1-9.