Microthermometric study and investigation of chemical and physical properties of fluid inclusion to determine the origin of sour water barite deposit
Subject Areas : Chemistry and Chemical Engineering of all specializations
حسین کلانترهرمزی
1
,
armin molaei
2
,
Tara molaei
3
1 - Petroleum Engineering management - PEDEC
2 - gachsaran university
3 - Chemical Engineering Department , Razi University, Kermanshah, Iran
Keywords: barite, fluid inclusion, temperature, deposit, ab torsh,
Abstract :
Barite can form in a variety of geological environments, as it occurs in a wide range of mineral deposits. To determine the origin and physicochemical conditions under which the Ab Torsh barite deposit formed, an extensive study was conducted using petrographic and fluid inclusion methods. Barite mineralization occurs at Ab Torsh as a stratabound vein in the Senonian carbonate rock units. Barite-quartz is accompanied by subordinate malachite, chrysocolla, Fe-Mn oxide-hydroxides, galena, azurite, fluorite, pyrite, and bornite.Thermochemical Sulfate Reduction (TSR) was the most likely mechanism for the formation of the reduced sulfur in galena. The salinity and homogenization temperatures in the aqueous fluid inclusions of barite and quartz (2.7-19.3 wt% NaCl equivalent and 110-275 °C, respectively) indicate that basinal fluids containing a meteoric water component were the source of the mineralizing solutions. The fluid inclusion data demonstrate that two fluid mixing have occurred: one between the hot basinal brines and cold meteoric waters, and another between heated and cold meteoric waters. It is estimated that the hot fluids derived from a maximum depth of about 9 km. The Ab Torsh deposit is classified here as a structure (unconformity)-related barite deposit. It is concluded that intense faulting and brecciation of the host rocks caused by post-Cretaceous compressional tectonics probably provided the channels necessary for the upward migration of deep mineralizing fluids from a basinal brine source. Barite formed where these ascending hot, Ba-bearing hydrothermal fluids encountered cooler, sulfate-bearing connate waters trapped in the overlying Senonian strata and/or the descending cold meteoric waters that dissolved evaporite-bearing rock units.
[1] حیدری، م.، 1398، گزارش پیجویی و تهیۀ نقشه در مقیاس 5000 : 1 محدودۀ معدنی آب ترش. شرکت صنایع تولید پودر بندر امام. 78 صفحه
[2] قرباني، م.، 1381، ديباچه¬اي بر زمين شناسي اقتصادي ايران، انتشارات سازمان زمين شناسي و اكتشافات معدني كشور،صفحه 695
[3] کشفی، س.م.، 1376، ویژگی¬های کانسارسازی و ژئوشیمیایی کانسار باریت آب ترش منطقۀ باغین کرمان. دانشگاه شهید باهنر کرمان، پایان نامه کارشناسی ارشد
]4[ Alaminia, Z., Tadayon, M., Griffith, E.M., Solé, J., Corfu, F., 2021, Tectonic-controlled sediment-hosted fluorite-barite deposits of the central Alpine-Himalayan segment, Komsheche, NE Isfahan, Central Iran, Chemical Geology 566, 120084
. ]5 [Alavi, M., 1991, Tectonic map of the Middle East 1:5000000, Geological Survey of Iran: Tehran, Iran
]]6[ Bau, M., Dulski, P., 1996, Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research 79, 37–55
. ]7[ Bau, M., Möller, P., 1991, REE systematics as source of information on minerogenesis. In Pagel M. and Leroy J.L. (eds.): Source, transport and deposition of metals, Balkema, Rotterdam, 17-20
. ]8[ Alaminia, Z.; Sharifi, M., 2018. Geological, geochemical and fluid inclusion studies on the evolution of barite mineralization in the Badroud area of Iran. Ore Geology Reviews, 92, 613-626
. ]9[ Bao, S.X., Zhou, H.Y., Peng, X.T., Ji, F.W., Yao, H.Q., 2008. Geochemistry of REE and yttrium in hydrothermal fluids from the Endeavour segment, Juan de Fuca Ridge. Geochemical Journal 42, 359–370
. ]10[Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solution. Geochimica et Cosmochimica Acta 57, 683–684
. ]11[Bodnar, R.J., 1999. Hydrothermal solutions, in: Marshall, C.P., Fairbridge, R.W. (Eds.), Encyclopedia of geochemistry. Kluwer Academic Publishers, Lancaster. pp. 333–337
. ]12[Bodnar, R.J., 2003. Reequilibration of Fluid Inclusions. 32. Mineralogical Association of Canada Short Course, pp. 213–231.
]13[Bouabdellah, M.; Sangster, D.F.; Leach, D.L.; Brown, A.C.; Johnson, C.A.; Emsbo, P., 2012. Genesis of the Touissit-Bou Beker Mississippi Valley-type district (Morocco-Algeria) and its relationship to the Africa-Europe collision. Economic Geology, 107, 117–146
. ]14[Clark, S.H.B.; Poole, F.G.; Wang, Z., 2004. Comparison of some sediment hosted, stratiform barite deposits in China, the United States, and India. Ore Geology Reviews 24, 85–101
. ]15[Derakhshi, M.G.; Hosseinzadeh, M.R.; Moayyed, M.; Maghfouri, S., 2019. Metallogenesis of Precambrian SEDEX-type Barite-(Pb-Cu-Zn) deposits in the Mishu mountain, NW Iran: Constrains on the geochemistry and tectonic evolution of mineralization. Ore Geology Reviews 107, 310-335
. ]16[Dill, H.G., 2010. The ‘chessboard’ classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth-Science Reviews 100, 1–420
. ]17[Djoković, I.; Dimitrijević, M. N., undated. Baghin quadrangle map 1: 100000. Geological Survey of Iran: Tehran, Iran.
]18[Dora, M.L., Roy, S.K., Khan, M., Randive, K., Kanungo, D.R., Barik, R., Kaushik, C.S., Bari, S.H., Pattanayak, R.S., Krishna, K.V.S., Mayachar, G.K., 2022. Rift-induced structurally controlled hydrothermal barite veins in 1.6 Ga granite, Western Bastar Craton, Central India: Constraints from fluid inclusions, REE geochemistry, sulfur and strontium isotopes studies. Ore Geology Reviews, 148, 105050
. ]19[Fall, A., Bodnar, R.J., 2018. How precisely can the temperature of a fluid event be constrained using fluid inclusions? Economic Geology 113, 1817-1843
. ]20[Ghorbani, M., 2013. The Economic Geology of Iran, Mineral Deposits and Natural Resources. Springer: Dordrecht, 542 p.
]21[Gleeson, S. A., Yardley, B. W. D, Munz, I. A., Boyce, A. J., 2003. Infiltration of basinal fluids into high‐grade basement, South Norway: sources and behaviour of waters and brines. Geofluids, 3, 33–48
. ]22[Goldstein, R.H., 2001. Fluid inclusions in sedimentary and diagenetic systems. Lithos 55, 159-193.
]23[Hanor, J.S., 2000. Barite-celestite geochemistry and environments of formation. In: Alpers CN, Jambor JL, Nordstorm DK (eds) Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy and Geochemistry, vol. 40. Mineralogical Society of America and The Geochemical Society, Washington, D.C., PP. 193-263
. ]24[Haschke, S., Gutzmer, J., Wohlgemuth-Ueberwasser, C.C., Kraemer, D., Burisch, M., 2021. The Niederschlag fluorite-(barite) deposit, Erzgebirge/Germany—a fluid inclusion and trace element study. Mineralium Deposita 56, 1071–1086
. ]25[Lacazette, A., 1990. Application of linear elastic fracture mechanics to the quantitative evaluation of fluid inclusion decrepitation. Geology, 18, 782-785
. ]26[Lawler, J.P., Crawford, M.L., 1983. Stretching of fluid inclusions resulting from a low-temperature microthermometric technique. Economic Geology, 78, 527–529
. ]27[McDonough, W.F., Sun, S.S., 1995. The composition of the earth. Chemical Geology 120, 223–253.
]28[Michard, A., 1989. Rare earth element systematics in hydrothermal fluids, Geochimica et Cosmochimica Acta 53, 745-750.
]29[Van den Kerkhof, A.M., Hein, U.F., 2001. Fluid inclusion petrography. Lithos 55, 27–47. Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos 55, 229–272
. ]30[Zarasvandi, A., Zaheri, N., Pourkaseb, H., Chrachi, A., Bagheri, H., 2014. Geochemistry and fluid-inclusion microthermometry of the Farsesh barite deposit. Iran. Geologos 20, 201-214
.