The Impact of Two-Dimensional and Three-Dimensional Building Characteristics on the Urban Heat Island Phenomenon
Subject Areas : Technology and energy in architectureMaryam Akhlaghi Ardekani 1 , Mohsen Vafamehr 2
1 - PhD student in Architecture, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
2 - Professor in the Department of Architecture, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Keywords: Architectural Solutions, Heat Island Phenomenon, Two- and Three-Dimensional Building Characteristics, Climate Impacts,
Abstract :
In recent years, urban heat islands have become a major issue linked to climate change, significantly impacting cities and the environment. This phenomenon causes elevated temperatures, shifts in precipitation, added pressure on infrastructure, declining air quality, and an increase in extreme weather events. Urban heat islands experience higher temperatures than their surrounding areas due to concentrated heat in densely built environments, leading to adverse effects on human health and the efficiency of cooling systems.The design and structure of urban areas, along with the two- and three-dimensional characteristics of buildings, play a vital role in the intensity and spread of heat islands. Elements such as building height, spacing between buildings, and the choice of construction materials can affect how heat is absorbed, emitted, and retained. Research has investigated the connection between urban design, architecture, and the formation of heat islands, offering strategies to alleviate the negative effects of this phenomenon.Proposed solutions include expanding green spaces, using reflective materials for buildings, and optimizing street and building designs. These approaches can lower temperatures, enhance quality of life, reduce energy consumption, and improve the environmental conditions of urban areas. By implementing these strategies, the adverse impacts of heat islands can be reduced, contributing to urban sustainability and aiding in climate change adaptation.
Extended Abstract
Introduction
The urban heat island (UHI) phenomenon and its thermal impacts on cities constitute a fundamental challenge in urban planning. Driven by population growth, urbanization, and land-use change, urban temperatures have risen relative to surrounding suburban and rural areas, giving rise to heat islands across the urban fabric. This phenomenon elevates temperatures in specific parts of the city, leading to increased energy consumption, alterations in meteorological patterns, amplification of air‐pollution effects, and adverse consequences for public health. In this study, the two-dimensional and three-dimensional characteristics of buildings are examined, and the contribution of various parameters to the UHI effect is evaluated. Based on the analysis of 2D and 3D building features, architectural design strategies are proposed to control and mitigate these effects with the aim of improving urban conditions. Accordingly, this research seeks to develop strategies for managing and reducing the negative impacts of the urban heat island phenomenon within the urban fabric.
Methodology
This study employs a descriptive–analytical approach through a systematic literature review. Peer-reviewed articles, books, and research reports on urban heat islands and urban morphology were examined to establish the theoretical framework, key concepts, and relevant indicators. Data were collected from major databases, including Scopus, Web of Science, and Google Scholar, focusing on morphological characteristics, urban design strategies, and mitigation approaches.The analysis involved comparative review of prior studies to assess the role of two-dimensional indicators (e.g., building coverage ratio) and three-dimensional indicators (e.g., building height and height variability) in reducing heat island effects. Textual analysis was also applied to explore how these indicators influence seasonal and spatial variations in heat island intensity. This method enabled the development of a theoretical and analytical framework that supports practical strategies in urban planning to mitigate urban heat island impacts.
Results and discussion
The Urban Heat Island (UHI) phenomenon, resulting from urbanization and land-use change, raises temperatures in cities relative to rural surroundings. Key drivers include dense construction, reduced vegetation, and extensive use of heat-absorbing materials such as asphalt and concrete. These conditions increase energy demand, worsen air quality, and create public health challenges, particularly in dense districts with limited airflow. Building characteristics play a critical role in shaping UHI intensity. Two-dimensional features, such as material type, surface color, albedo, and vegetation coverage, directly influence heat absorption and dissipation. High-albedo materials and reflective coatings reduce surface temperatures, while permeable asphalt and phase change materials (PCMs) help moderate thermal fluctuations. Likewise, integrating vegetation through green roofs and walls supports shading, evapotranspiration, and improved air quality.Three-dimensional features, including orientation, height, and street width, determine solar exposure and natural ventilation. Improper orientation or deep urban canyons trap heat, while balanced height-to-width ratios facilitate airflow and shading. Design interventions such as optimized building layout, reflective facades, and climate-responsive street proportions are therefore essential strategies to mitigate UHI effects and improve urban environmental quality.
Conclusion
The urban heat island (UHI) phenomenon, as one of the major challenges in urban areas due to rising temperatures and environmental pollution, requires serious attention to effective mitigation strategies. This study, with a focus on the two-dimensional and three-dimensional aspects of urban and architectural design, proposes strategies for reducing the impacts of urban heat islands. Regarding two-dimensional features, the integration of appropriate vegetation, the improvement of urban space design through the use of high-reflectivity materials, and the expansion of water bodies are introduced as primary strategies for lowering temperatures and improving urban climatic conditions. These measures can significantly reduce the intensity of heat islands. In terms of three-dimensional features, optimizing building height and density, designing open spaces, and employing green roofs and walls are recommended as tools for better managing urban temperatures and reducing heat accumulation in urban environments. These strategies not only improve thermal conditions but also enhance natural ventilation and contribute to a higher quality of urban life. The adoption of comprehensive strategies tailored to environmental and climatic characteristics can play a crucial role in mitigating the impacts of urban heat islands and fostering more sustainable and livable cities.
1. آزموده، مریم، حیدری، شاهین (1396). تاثیر دیوارهای سبز شهری بر کاهش دمای خرداقلیمها و اثر جزیره گرمایی شهری، نشریه علوم و تکنولوژِ محیط زیست، 19 (2). https://doi.org/10.22034/jest.2017.11398 .
2. ترکی، مسلم و مسعودیان، سیدابوالفضل (1400). واکاوی رفتار زمانی و مکانی جزیره گرمایی کلان شهر مشهد، نشریه سنجش از دور و GIS ایران، 13(4). https://doi.org/10.52547/gisj.13.4.35 .
3. تقی زاده، زهرا و مزیدی، احمد (1398). بررسی تغییر پذیری مخاطره جزیره گرمایی با توجه به تغییرات کاربری اراضی و پوشش زمین در شهر اصفهان، مجله تحلیل فضایی مخاطرات طبیعی، 6(3). http://dx.doi.org/10.29252/jsaeh.6.3.103 .
4. حیدری، علی اکبر و قهرمان ایزدی، ندا و اکبری، زهرا (1401). تاثیر نوع سازماندهی مجتمع های مسکونی بر ایجاد پدیده ی جزیره گرمایی نمونه موردی: مجتمع های مسکونی میان مرتبه ی شهر شیراز، مجله پژوهش و برنامه ریزی شهری، 13(50) https://doi.org/10.30495/jupm.2022.23417.3350 . .
5. خداکرمی، جمال. حاتمی، مجتبی (1395). جزیره حرارتی، متغیری جدید در معماری و شهرسازی، فکر نو: تهران.
6. سلطانی، علی، اسمعیلی، مهرآرا، و خاتمی، زهرا (1401). تاثیر شهرنشینی و کاربری زمین بر جزیره گرمایی شهری. کنفرانس ملی شهرسازی، معماری، عمران و محیط زیست. https://civilica.com/doc/1503517 .
7. شوشتری، صلاح الدین، قلعه نوعی، محمود، عزتیان، ویکتوریا، ملکی، آیدا، پاکنژاد، مصطفی، و رهپو، رئوفه (1397). بررسی روش ترکیبی در تشخیص جزایر گرمایی شهر اصفهان و راهکار تعدیل از طریق ظرفیت فضای سبز شهری. مطالعات شهری، 7(28 )، 41-54. DOI: 10.34785/J011.2018.015.
8. صادقینیا، ع. علیجانی، ب. و ضیائیان، پ (1391). تحلیل فضایی-زمانی جزیره گرمایی کلانشهر تهران با استفاده از سنجش از دور و سیستم اطلاعات جغرافیایی. جغرافیا و مخاطرات محیطی، 1(4)، 17-1. https://doi.org/10.22067/geo.v1i4.16950
9. کارکن سیستانی، مرضیه، دوستان، رضا (1394). جزیره گرمایی کلان شهر مشهد. جغرافیا و توسعه فضای شهری، 2(2 (پیاپی 3))، 123-138. https://doi.org/10.22067/gusd.v2i2.47438 .
10. مزیدی، احمد، امیدوار، کمال، مظفری، غلامعلی، و تقی زاده، زهرا (1398)، آشکار سازی تغییرات جزیره گرمایی شهر اصفهان با تأکید بر توسعه شهری، کاوش های جغرافیایی مناطق بیابانی، 7(1)، 21-39. https://dor.isc.ac/dor/20.1001.1.2345332.1398.7.1.2.0.
11. مزیدی، احمد، مرضیه، حسینی، فاطمه سادات (1394). تاثیر تغییر کاربری و پوشش زمین بر جزیزه گرمایی در منطقه شهری یزد با استفاده از دادههای سنجش از راه دور، مجله جغرافیا و توسعه، 13 (38). https://doi.org/10.22111/gdij.2015.1926 .
12. منصوری، سحر، خالدی، شهریار، برنا، رضا، اسدیان، فریده (1398). اثر تغییرات کاربری و کاهش فضای سبز شهری بر تشدید جزیره گرمایی و آلودگی شهر تهران (مطالعه موردی: منطقه یک)، 63، 114-129. https://civilica.com/doc/1411955 .
13. E.J. Gago, J. Roldan, R. Pacheco-Torres, J. Ordóñez, (2013), The city and urban heat islands: A review of strategies to mitigate adverse effects, Renewable and Sustainable Energy Reviews, Volume 25, 749-758. https://doi.org/10.1016/j.rser.2013.05.057 .
14. Han, D., Zhang, T., Qin, Y., Tan, Y., & Liu, J. (2023). A comparative review on the mitigation strategies of urban heat island (UHI): a pathway for sustainable urban development. Climate and Development, 15(5), 379–403. http://dx.doi.org/10.1080/17565529.2022.2092051 .
15. Jinyao Lin, Keqin Wei, Zifeng Guan,(2024), Exploring the connection between morphological characteristic of built-up areas and surface heat islands based on MSPA, Urban Climate, 53. https://doi.org/10.1016/j.uclim.2023.101764 .
16. JOUR, Liu, Biao, Guo, Xian, Jiang, Jie, (2023), How Urban Morphology Relates to the Urban Heat Island Effect: A Multi-Indicator Study, sustainability, 15. http://dx.doi.org/10.3390/su151410787 .
17. lisa mummery gartland, (2008), Heat Islands: understanding and mitigating heat in urban areas, Routledge: London. http://dx.doi.org/10.1080/07293682.2011.591742 .
18. N. Enteria, M. Santamouris, U. Eicker. (2021), Urban Heat Island Mitigation: hot and humid regions, Springer Nature: Singapore. http://dx.doi.org/10.1007/978-981-33-4050-3 .
19. Nyuk Hien Wong, Yu Chen, (2008), Tropical Urban Heat Islands: climate, buildings and greenery, Routledge: London. http://dx.doi.org/10.4324/9780203931295 .
20. Peymanrad, Amirhossei. (2014). Examining the form of urban blocks with the approach of external thermal comfort in Tehran. master's thesis, supervisor: Nazanin Nasrallahi, Ilam University. [In Persian]
21. Qin, Z., Karnieli, A., & Berliner, P. (2001). A mono – window algorithm for retraining land Surface Temperature from Land sat TM data and its application to the Israel – Egypt border region. International Journal of Remote sensing, 22(18), 3719- 3746. http://dx.doi.org/10.1080/01431160010006971 .
22. Se Woong Kim, Robert D. Brown, (2021), Urban heat island (UHI) variations within a city boundary: A systematic literature review, Renewable and Sustainable Energy Reviews, 148. https://doi.org/10.1016/j.rser.2021.111256
23. Sijia Han, Hao Hou, Ronald C. Estoque, Yaoyao Zheng, Chuhui Shen, Yuji Murayama, Jing Pan, Ben Wang, Tangao Hu, (2023), Seasonal effects of urban morphology on land surface temperature in a three-dimensional perspective: A case study in Hangzhou, China,Building and Environment, 228. https://doi.org/10.1016/j.buildenv.2022.109913 .
24. Ying Zheng & Qiyao Han & Greg Keeffe, (2024),An Evaluation of Different Landscape Design Scenarios to Improve Outdoor Thermal Comfort in Shenzhen, sustainability, 13(1), 1-17. http://dx.doi.org/10.3390/land13010065 .