Fabrication of Ti Bulk amorphous alloys by mechanical alloying and plasma sintering methods and evaluation of structure and corrosion behavior
Subject Areas : journal of New MaterialsHossein Naseri 1 , Behnam Lotfi 2 , Zohreh Sadeghian 3
1 - PhD student of Materials Engineering, Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 - Associate Professor, Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 - Associate Professor, Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Keywords: Amorphous alloys, Mechanical alloying, SPS process,
Abstract :
Introduction: Amorphous materials are of interest to academic and industry researchers due to their special properties. Optically and electronically they look like ordinary metals, but the absence of crystals and defects as vacancies, dislocations, or grain boundaries increase their chemical, physical and mechanical properties.
Methods: In this study, Ti47-Cu38-Zr7.5-Fe2.5-Sn2-Si1-Ag2 and Ti46-Cu27.5-Zr11.5-Co7-Sn3-Si1-Ag4 (%at) Amorphous alloys were produced by the mechanical alloying (MA) process and spark plasma sintering (SPS) technique, and their structure and corrosion behavior were evaluated. In order to study phase evolutions, evaluate the thermal stability and microstructure of the powder and compacted samples, XRD, DSC and FE-SEM were used, respectively. Furthermore, polarization method was used to evaluate corrosion.
Findings: The results showed that 45 hours of milling can tend to amorphization of powders. Ti47-Cu38-Zr7.5-Fe2.5-Sn2-Si1-Ag2 and Ti46-Cu27.5-Zr11.5-Co7-Sn3-Si1-Ag4 (%at) amorphous powders were compacted by plasma sintering process at 300 and 420 °C under 180 Mpa uniaxial pressure. The evaluation of the compacted samples showed that the samples sintered at 300°C temperature under 180 MPa retained their amorphous state. Additionally, investigation of corrosion behavior revealed that the amorphous TiCuZrSnSiAgFe alloy exhibited better corrosion resistance in the body simulation solution in comparison with TiCuZrSnSiAgCo and conventional Ti6Al4V alloys.
[1] M.S. El-Eskandarany, N. Ali, M. Saeed, Glass-Forming Ability and Soft Magnetic Properties of (Co75Ti25) 100−xFex (x; 0–20 at.%) Systems Fabricated by SPS of Mechanically Alloyed Nanopowders, Nanomaterials. 10 (2020) 849. https://doi.org/10.3390/nano10050849.
[2] P. Du, B. Li, J. Chen, K. Li, G. Xie, Novel Ti-based bulk metallic glass free of toxic and noble elements for bio-implant applications, Alloys and Compounds. A. 934 (2023) 297–303.
[3] C. Wang, N. Hua, Z. Liao, W. Yang, S. Pang, P.K. Liaw, T. Zhang, Ti-Cu-Zr-Fe-Sn-Si-Ag-Pd Bulk Metallic Glasses with Potential for Biomedical Applications, Metall. Mater. Trans. A. 52 (2021) 1559–1567. https://doi.org/10.1007/s11661-021-06183-y.
[4] S. Pang, Y. Liu, H. Li, L. Sun, Y. Li, T. Zhang, New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications, J. Alloys Compd. 625 (2015) 323–327. https://doi.org/10.1016/j.jallcom.2014.07.021.
]5[ م. ع. اکبری، ز. صادقیان، ب. لطفی " تاثیر میزان مولیبدن بر آمورف شدن نیکل با استفاده از آلیاژسازی مکانیکی" فصلنامه علمی - پژوهشی مواد نوین, دوره 5، شماره 3، بهار 1394، صفحه 69-76.
[6] H. Nguyen, J. Kim,
Y. Kwon, J. Kim, Amorphous Ti–Cu–Ni–Al alloys prepared by mechanical alloying. J Mater Sci 44 (2009) 2700–2704. https://doi.org/10.1007/s10853-009-3354-6
[7] Y. Zhu, Q. Li, Y. He, G. Wang, X. Wang, A new Ti-based amorphous powder synthesized by Mechanical Alloying. Advanced Materials Research. 433-440 (2012) 642–645. https://doi.org/10.4028/www.scientific.net/AMR.433-440.642
[8] Y. Zhu, Y. He, Q. Li, Ti-Al-Zr-B-Y amorphous alloy powders prepared by mechanical alloying. Advanced Materials Research. 1095 (2015) 222–225. https://doi.org/10.4028/www.scientific.net/AMR.1095.222
[9] H. schonrath, J. Wegner, M. Frey, M. A. schroer, X. Jin, M. Teresa, R. Busch, S. Kelszczynski, Novel titanium‑based sulfur‑containing BMG for PBF‑LB/M16, 9 (2024) 601–612. https://doi.org/10.1007/s40964-024-00668-z.
[10] P. Du, T. Xiang, X. Yang, G. Xie, Optimization of bioactivity and antibacterial properties of porous Ti-based bulk metallic glass through chemical treatment, ceramic international. 49 (2023) 13960–13971.https://doi.org/10.1016/j.ceramint.2022.12.278.
[11] K. Zuo, P. Du, X. Yang, K. Li, T. Xiang, L. Zhang, G. Xie, Enhancing the bioactivity and ductility of bulk metallic glass by introducing Fe to construct semi-degradable biomaterial 49 (2024) 4162–4176. https://doi.org/10.1016/j.jmrt.2024.01.043.
[12] G. Xie, H. Kanetaka, H. Kato, W. Wang, Optimization of bioactivity and antibacterial properties of porous Ti-based bulk metallic glass through chemical treatment , J of Mate Res and Tech. 105 (2019) 153–162.
https://doi.org/10.1016/j.intermet.2018.12.002
[13] M. Chen, L. Zhu, Y. Chen, S. Dai, Q. Liu, N. Xue, W. Li, J. Wang, Y. Huang, K. Yang, L, Shao, Effect of Chemical Composition on the Thermoplastic Formability and Nanoindentation of Ti-Based Bulk Metallic Glasses. materials. 17 (2024) 1670–1676. https://doi.org/10.3390/ma17071699.
[14] F. Cai, A. Blanquer, M. B. Costa, L. Schweiger, B. Sarac, A. L. Greer, J. Schroers, C. Teichert, C. Nogués, F. Spieckermann, J. Eckert, Hierarchical Surface Pattern on Ni-Free Ti-Based Bulk Metallic Glass to Control Cell Interactions, Mater. Small. 20 (2024) 875–883. https://doi.org/10.1002/smll.202310364.
[15] W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci. 57 (2012) 487–656. https://doi.org/10.1016/j.pmatsci.2011.07.001.
[16] P. Du, Z. Wu, K. Li, T. Xiang, G. Xie, Porous Ti-based bulk metallic glass orthopedic biomaterial with high strength and low Young’s modulus produced by one step SPS, J. Mater. Res. Technol. 13 (2021) 251–259. https://doi.org/10.1016/j.jmrt.2021.04.084.
[17] R.W.C. P. Haasen, Physical Metallurgy, 4th ed., Elsevier Science, 1996.
[18] C.C. Koch, Amorphization by mechanical alloying, J. Non. Cryst. Solids. 117–118 (1990) 670–678. https://doi.org/10.1016/0022-3093(90)90620-2
[19] D. Janovszky, M. Sveda, A. Sycheva, F. Kristaly, F. Zámborszky, T. Koziel, P. Bala, G. Czel, G. Kaptay, Amorphous alloys and differential scanning calorimetry (DSC), J. Therm. Anal. Calorim. 147 (2022) 7141–7157. https://doi.org/10.1007/s10973-021-11054-0.
[20] M.R. Mahundla, W.R. Matizamhuka, A. Yamamoto, M.B. Shongwe, R. Machaka, Corrosion Behaviour of Ti–34Nb–25Zr Alloy Fabricated by Spark Plasma Sintering, J. Bio- Tribo-Corrosion. 6 (2020) 38. https://doi.org/10.1007/s40735-020-0332-7.